A novel hybrid swarm intelligence algorithm for solving TSP and desired-path-based online obstacle avoidance strategy for AUV

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Robotics and Autonomous Systems Pub Date : 2024-03-01 DOI:10.1016/j.robot.2024.104678
Yixiao Zhang, Yue Shen, Qi Wang, Chao Song, Ning Dai, Bo He
{"title":"A novel hybrid swarm intelligence algorithm for solving TSP and desired-path-based online obstacle avoidance strategy for AUV","authors":"Yixiao Zhang,&nbsp;Yue Shen,&nbsp;Qi Wang,&nbsp;Chao Song,&nbsp;Ning Dai,&nbsp;Bo He","doi":"10.1016/j.robot.2024.104678","DOIUrl":null,"url":null,"abstract":"<div><p>Aiming at the problem that Ant Colony Optimization (ACO) is subject primarily to the parameters, we propose a hybrid algorithm SOA-ACO-2Opt to optimize the ACO parameter combination through Seagull Optimization Algorithm (SOA) to strengthen ACO’s search capability. To obtain a uniform initial distribution of the ACO parameter combination, we incorporated the Kent Chaos Map (KCM) to randomly initialize the seagull’s position, reducing the tendency of SOA to fall into the local optimum. To avoid slow calculation speed and premature convergence of ACO, we improved the adaptive multi-population mechanism to reduce repeated redundant calculations and used the <span><math><mrow><mi>ϵ</mi><mo>−</mo><mi>g</mi><mi>r</mi><mi>e</mi><mi>e</mi><mi>d</mi><mi>y</mi></mrow></math></span> and default strategy, respectively, to update the ants’ position. 2Opt is applied to find shorter paths in each iteration. In addition, when AUV navigates on the planned path, it may encounter obstacles. Therefore, this paper proposes an autonomous obstacle avoidance algorithm based on forward-looking sonar to ensure safety during tasks. SOA-ACO-2Opt is verified against twelve different problems extracted from TSPLIB and compared with some state-of-the-art algorithms. Furthermore, sea trials were carried out for several representative marine engineering applications of TSP and obstacle avoidance. Experimental results show that this work can significantly improve AUV’s work efficiency and intelligence and protect the AUV’s safety.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024000617","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem that Ant Colony Optimization (ACO) is subject primarily to the parameters, we propose a hybrid algorithm SOA-ACO-2Opt to optimize the ACO parameter combination through Seagull Optimization Algorithm (SOA) to strengthen ACO’s search capability. To obtain a uniform initial distribution of the ACO parameter combination, we incorporated the Kent Chaos Map (KCM) to randomly initialize the seagull’s position, reducing the tendency of SOA to fall into the local optimum. To avoid slow calculation speed and premature convergence of ACO, we improved the adaptive multi-population mechanism to reduce repeated redundant calculations and used the ϵgreedy and default strategy, respectively, to update the ants’ position. 2Opt is applied to find shorter paths in each iteration. In addition, when AUV navigates on the planned path, it may encounter obstacles. Therefore, this paper proposes an autonomous obstacle avoidance algorithm based on forward-looking sonar to ensure safety during tasks. SOA-ACO-2Opt is verified against twelve different problems extracted from TSPLIB and compared with some state-of-the-art algorithms. Furthermore, sea trials were carried out for several representative marine engineering applications of TSP and obstacle avoidance. Experimental results show that this work can significantly improve AUV’s work efficiency and intelligence and protect the AUV’s safety.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解 TSP 的新型混合群智能算法和基于期望路径的自动潜航器在线避障策略
针对蚁群优化(ACO)主要受制于参数的问题,我们提出了一种混合算法SOA-ACO-2Opt,通过海鸥优化算法(SOA)优化ACO参数组合,以增强ACO的搜索能力。为了获得均匀的 ACO 参数组合初始分布,我们加入了肯特混沌图(Kent Chaos Map,KCM)来随机初始化海鸥的位置,从而降低了 SOA 陷入局部最优的倾向。为了避免 ACO 计算速度过慢和过早收敛,我们改进了自适应多群体机制,以减少重复冗余计算,并分别使用和默认策略来更新蚂蚁的位置。在每次迭代中应用 2Opt 寻找更短的路径。此外,当 AUV 按计划路径导航时,可能会遇到障碍物。因此,本文提出了一种基于前视声纳的自主避障算法,以确保执行任务时的安全。SOA-ACO-2Opt 针对从 TSPLIB 中提取的 12 个不同问题进行了验证,并与一些最先进的算法进行了比较。此外,还对 TSP 和避障的几个代表性海洋工程应用进行了海上试验。实验结果表明,这项工作可以显著提高 AUV 的工作效率和智能,并保护 AUV 的安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
期刊最新文献
A survey of demonstration learning Model-less optimal visual control of tendon-driven continuum robots using recurrent neural network-based neurodynamic optimization Editorial Board GSC: A graph-based skill composition framework for robot learning DewROS2: A platform for informed Dew Robotics in ROS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1