Laurel Ettinger, Allison Stright, Kaitlyn Frampton, Laura Baxter, Tanvi Dabas, Mackenzie Gorman, Rachael Moss, Matthew B. McSweeney
{"title":"Sensory properties of thickened and protein-enriched plant-based frozen desserts","authors":"Laurel Ettinger, Allison Stright, Kaitlyn Frampton, Laura Baxter, Tanvi Dabas, Mackenzie Gorman, Rachael Moss, Matthew B. McSweeney","doi":"10.1111/jtxs.12825","DOIUrl":null,"url":null,"abstract":"<p>The number of consumers following plant-based diets has increased and in turn, the variety of plant-based foods available on the market has also increased. Many plant-based foods aim to mimic the functionality and sensory properties of conventional dairy products; however, they may not be suitable for specific populations. Dysphagia, for example, is a swallowing condition requiring texture-modified foods that meet specific criteria. While many conventional thickened products exist that are safe for individuals with dysphagia, the growing interest in plant-based eating alongside the increasing prevalence of dysphagia prompts a need for research on the use and safety of thickened plant-based alternatives. This study investigated the sensory properties of a thickened protein-enhanced ice cream (dairy and whey) compared to thickened protein-enhanced plant-based frozen desserts (cashew and pea, and coconut and pea). The formulations were evaluated using the International Dysphagia Diet Standardization (IDDSI) Spoon Tilt Test and a sensory trial (<i>n</i> = 104 participants, 47 flexitarians and 57 typical consumers) using static (hedonic scales and check-all-that-apply [CATA]), and dynamic (temporal check-all-that-apply (TCATA)) methods. The dairy and whey sample consistently passed the IDDSI test, while the plant-based samples did not. TCATA identified that the plant-based samples had an increased cohesiveness and adhesiveness, and decreased slipperiness when compared to the dairy and whey sample. The differences in textural properties may explain why the plant-based samples did not pass the IDDSI test. The study identified that although plant-based foods strive to mimic conventional dairy products, they have different textural and flavor properties.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtxs.12825","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of texture studies","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12825","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The number of consumers following plant-based diets has increased and in turn, the variety of plant-based foods available on the market has also increased. Many plant-based foods aim to mimic the functionality and sensory properties of conventional dairy products; however, they may not be suitable for specific populations. Dysphagia, for example, is a swallowing condition requiring texture-modified foods that meet specific criteria. While many conventional thickened products exist that are safe for individuals with dysphagia, the growing interest in plant-based eating alongside the increasing prevalence of dysphagia prompts a need for research on the use and safety of thickened plant-based alternatives. This study investigated the sensory properties of a thickened protein-enhanced ice cream (dairy and whey) compared to thickened protein-enhanced plant-based frozen desserts (cashew and pea, and coconut and pea). The formulations were evaluated using the International Dysphagia Diet Standardization (IDDSI) Spoon Tilt Test and a sensory trial (n = 104 participants, 47 flexitarians and 57 typical consumers) using static (hedonic scales and check-all-that-apply [CATA]), and dynamic (temporal check-all-that-apply (TCATA)) methods. The dairy and whey sample consistently passed the IDDSI test, while the plant-based samples did not. TCATA identified that the plant-based samples had an increased cohesiveness and adhesiveness, and decreased slipperiness when compared to the dairy and whey sample. The differences in textural properties may explain why the plant-based samples did not pass the IDDSI test. The study identified that although plant-based foods strive to mimic conventional dairy products, they have different textural and flavor properties.
期刊介绍:
The Journal of Texture Studies is a fully peer-reviewed international journal specialized in the physics, physiology, and psychology of food oral processing, with an emphasis on the food texture and structure, sensory perception and mouth-feel, food oral behaviour, food liking and preference. The journal was first published in 1969 and has been the primary source for disseminating advances in knowledge on all of the sciences that relate to food texture. In recent years, Journal of Texture Studies has expanded its coverage to a much broader range of texture research and continues to publish high quality original and innovative experimental-based (including numerical analysis and simulation) research concerned with all aspects of eating and food preference.
Journal of Texture Studies welcomes research articles, research notes, reviews, discussion papers, and communications from contributors of all relevant disciplines. Some key coverage areas/topics include (but not limited to):
• Physical, mechanical, and micro-structural principles of food texture
• Oral physiology
• Psychology and brain responses of eating and food sensory
• Food texture design and modification for specific consumers
• In vitro and in vivo studies of eating and swallowing
• Novel technologies and methodologies for the assessment of sensory properties
• Simulation and numerical analysis of eating and swallowing