Jin Se Kim, Jin Hee Kim, Hyeyoon Eo, In Gyoung Ju, So-Ri Son, Ji-Woon Kim, Dae Sik Jang, Myung Sook Oh
{"title":"Inulae Flos has Anti-Depressive Effects by Suppressing Neuroinflammation and Recovering Dysfunction of HPA-axis.","authors":"Jin Se Kim, Jin Hee Kim, Hyeyoon Eo, In Gyoung Ju, So-Ri Son, Ji-Woon Kim, Dae Sik Jang, Myung Sook Oh","doi":"10.1007/s12035-024-04094-8","DOIUrl":null,"url":null,"abstract":"<p><p>Depression is a debilitating mood disorder that causes persistent feelings of sadness, emptiness, and a loss of joy. However, the clinical efficacy of representative drugs for depression, such as selective serotonin reuptake inhibitors, remains controversial. Therefore, there is an urgent need for more effective therapies to treat depression. Neuroinflammation and the hypothalamic-pituitary-adrenal (HPA) axis are pivotal factors in depression. Inulae Flos (IF), the flower of Inula japonica Thunb, is known for its antioxidant and anti-inflammatory effects. This study explored whether IF alleviates depression in both in vitro and in vivo models. For in vitro studies, we treated BV2 and PC12 cells damaged by lipopolysaccharides or corticosterone (CORT) with IF to investigate the mechanisms of depression. For in vivo studies, C57BL/6 mice were exposed to chronic restraint stress and were administered IF at doses of 0, 100, and 300 mg/kg for 2 weeks. IF inhibited pro-inflammatory mediators, such as nitric oxide, inducible nitric oxide synthase, and interleukins in BV2 cells. Moreover, IF increased the viability of CORT-damaged PC12 cells by modulating protein kinase B, a mammalian target of the rapamycin pathway. Behavioral assessments demonstrated that IF reduced depression-like behaviors in mice. We found that IF reduced the activation of microglia and astrocytes, and regulated synapse plasticity in the mice brains. Furthermore, IF lowered elevated CORT levels in the plasma and restored glucocorticoid receptor expression in the hypothalamus. Collectively, these findings suggest that IF can alleviate depression by mitigating neuroinflammation and recovering dysfunction of the HPA-axis.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"8038-8050"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04094-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Depression is a debilitating mood disorder that causes persistent feelings of sadness, emptiness, and a loss of joy. However, the clinical efficacy of representative drugs for depression, such as selective serotonin reuptake inhibitors, remains controversial. Therefore, there is an urgent need for more effective therapies to treat depression. Neuroinflammation and the hypothalamic-pituitary-adrenal (HPA) axis are pivotal factors in depression. Inulae Flos (IF), the flower of Inula japonica Thunb, is known for its antioxidant and anti-inflammatory effects. This study explored whether IF alleviates depression in both in vitro and in vivo models. For in vitro studies, we treated BV2 and PC12 cells damaged by lipopolysaccharides or corticosterone (CORT) with IF to investigate the mechanisms of depression. For in vivo studies, C57BL/6 mice were exposed to chronic restraint stress and were administered IF at doses of 0, 100, and 300 mg/kg for 2 weeks. IF inhibited pro-inflammatory mediators, such as nitric oxide, inducible nitric oxide synthase, and interleukins in BV2 cells. Moreover, IF increased the viability of CORT-damaged PC12 cells by modulating protein kinase B, a mammalian target of the rapamycin pathway. Behavioral assessments demonstrated that IF reduced depression-like behaviors in mice. We found that IF reduced the activation of microglia and astrocytes, and regulated synapse plasticity in the mice brains. Furthermore, IF lowered elevated CORT levels in the plasma and restored glucocorticoid receptor expression in the hypothalamus. Collectively, these findings suggest that IF can alleviate depression by mitigating neuroinflammation and recovering dysfunction of the HPA-axis.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.