Ultralight anisotropic Ti3C2Tx MXene/Carbon nanotube hybrid aerogel for highly efficient solar steam generation

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-03-04 DOI:10.1016/j.carbon.2024.118976
Jinyi Wu , Dan Liu , Yuxuan Sun, Bokun Wei, Kun Dai, Yiqing Sun, Fei Zhang, Chuanbing Li, Jie Xue, Zifu Zhu, Xiaobo Gao, Qingbin Zheng
{"title":"Ultralight anisotropic Ti3C2Tx MXene/Carbon nanotube hybrid aerogel for highly efficient solar steam generation","authors":"Jinyi Wu ,&nbsp;Dan Liu ,&nbsp;Yuxuan Sun,&nbsp;Bokun Wei,&nbsp;Kun Dai,&nbsp;Yiqing Sun,&nbsp;Fei Zhang,&nbsp;Chuanbing Li,&nbsp;Jie Xue,&nbsp;Zifu Zhu,&nbsp;Xiaobo Gao,&nbsp;Qingbin Zheng","doi":"10.1016/j.carbon.2024.118976","DOIUrl":null,"url":null,"abstract":"<div><p>Solar steam generation (SSG) has been considered as a promising method to produce fresh water from seawater. Due to high light absorption and excellent chemical stability, carbon nanotube (CNT) has been widely used for SSG. However, it is still challenge to simultaneously realize high water evaporation rate and energy efficiency for CNT based solar steam generator. Herein, ultralight anisotropic Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/carbon nanotube (A-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/CNT) aerogels are designed and fabricated for highly efficient SSG. The combination of CNT and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene endows the hybrid aerogel with high light absorption and effective localized surface plasmon resonance (LSPR), resuting in enhanced light-to-heat conversion efficiency. The porous structure of aerogel leads to multiple scattering and absorption, further contributing to the photothermal conversion process. Moreover, the low thermal conductivity of aerogel structure effectively reduces the heat loss to environment. Through tailoring the anisotropic channel, the A-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/CNT hybrid aerogel with average channel size of 80 μm possesses most efficient water transport due to the capillary effect and formation of intermediate water. Therefore, the A-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/CNT hybrid aerogel exhibits high average light absorption of 95.68% in the wavelength range of 200–2500 nm, excellent water evaporation rate of 2.10 kg m<sup>−2</sup> h<sup>−1</sup> under 1 sun irradiation (1 kW m<sup>−2</sup>) with a high energy efficiency of 93.4%, and remarkable durability with 7 days continuous water evaporation. The A-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/CNT hybrid aerogel also shows high resistance to salt crystallization due to its high salt transport flux of 1.90 kg m<sup>−2</sup> h<sup>−1</sup>. This work offers a prospective strategy for constructing highly efficient solar steam generator with stable performance for practical application in seawater desalination.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"223 ","pages":"Article 118976"},"PeriodicalIF":10.5000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324001957","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solar steam generation (SSG) has been considered as a promising method to produce fresh water from seawater. Due to high light absorption and excellent chemical stability, carbon nanotube (CNT) has been widely used for SSG. However, it is still challenge to simultaneously realize high water evaporation rate and energy efficiency for CNT based solar steam generator. Herein, ultralight anisotropic Ti3C2Tx MXene/carbon nanotube (A-Ti3C2Tx/CNT) aerogels are designed and fabricated for highly efficient SSG. The combination of CNT and Ti3C2Tx MXene endows the hybrid aerogel with high light absorption and effective localized surface plasmon resonance (LSPR), resuting in enhanced light-to-heat conversion efficiency. The porous structure of aerogel leads to multiple scattering and absorption, further contributing to the photothermal conversion process. Moreover, the low thermal conductivity of aerogel structure effectively reduces the heat loss to environment. Through tailoring the anisotropic channel, the A-Ti3C2Tx/CNT hybrid aerogel with average channel size of 80 μm possesses most efficient water transport due to the capillary effect and formation of intermediate water. Therefore, the A-Ti3C2Tx/CNT hybrid aerogel exhibits high average light absorption of 95.68% in the wavelength range of 200–2500 nm, excellent water evaporation rate of 2.10 kg m−2 h−1 under 1 sun irradiation (1 kW m−2) with a high energy efficiency of 93.4%, and remarkable durability with 7 days continuous water evaporation. The A-Ti3C2Tx/CNT hybrid aerogel also shows high resistance to salt crystallization due to its high salt transport flux of 1.90 kg m−2 h−1. This work offers a prospective strategy for constructing highly efficient solar steam generator with stable performance for practical application in seawater desalination.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效太阳能蒸汽发电的超轻各向异性 Ti3C2Tx MXene/碳纳米管混合气凝胶
太阳能蒸汽发电(SSG)被认为是从海水中生产淡水的一种有前途的方法。由于碳纳米管(CNT)具有高光吸收性和优异的化学稳定性,因此被广泛应用于太阳能蒸汽发生器。然而,如何同时实现基于碳纳米管的太阳能蒸汽发生器的高水蒸发率和能源效率仍是一个挑战。本文设计并制造了超轻各向异性 Ti3C2Tx MXene/碳纳米管(A-Ti3C2Tx/CNT)气凝胶,用于高效太阳能蒸汽发生器。碳纳米管和 Ti3C2Tx MXene 的结合使混合气凝胶具有高光吸收率和有效的局部表面等离子体共振(LSPR),从而提高了光热转换效率。气凝胶的多孔结构导致多重散射和吸收,进一步促进了光热转换过程。此外,气凝胶结构的低导热性还能有效减少热量向环境的散失。通过定制各向异性通道,平均通道尺寸为 80 μm 的 A-Ti3C2Tx/CNT 混合气凝胶由于毛细管效应和中间水的形成,具有最高效的水传输能力。因此,A-Ti3C2Tx/CNT 混合气凝胶在 200-2500 nm 波长范围内的平均光吸收率高达 95.68%,在 1 个太阳光照射(1 kW m-2)条件下的水蒸发率为 2.10 kg m-2 h-1,能量效率高达 93.4%,并且具有显著的耐久性,可连续 7 天进行水蒸发。A-Ti3C2Tx/CNT 混合气凝胶的盐迁移通量高达 1.90 kg m-2 h-1,因此也显示出很强的抗盐结晶能力。这项工作为建造性能稳定的高效太阳能蒸汽发生器提供了一种前瞻性策略,可实际应用于海水淡化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
hydrochloric acid (37%)
麦克林
LiF
阿拉丁
NaCl
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Editorial Board Outside Front Cover - Journal name, Cover image, Volume issue details, ISSN, Cover Date, Elsevier Logo and Society Logo if required Modulating the confined Na deposition via a carbon hollow tube decorated with in-situ formed sodiophilic NaZn13 alloys Friction condition switching two-type transfer layers of hydrogenated amorphous carbon with distinct tribological behaviors Preparation of multi-nitrogen/oxygen carbon derivatives for the adsorption of anionic pollutants: Urea decomposition and transformation of active sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1