Zixiang Luo, Keyu Zhuang, Seong Jun Kim, Kyle D W Vollett, Zijian Lou, Jian Wang, Hai-Ying Mary Cheng, Mohamad Khazaei, Michael G Fehlings, Hai-Ling Margaret Cheng
{"title":"Longitudinal Magnetic Resonance Imaging Tracking of Transplanted Neural Progenitor Cells in the Spinal Cord Utilizing the Bright-Ferritin Mechanism.","authors":"Zixiang Luo, Keyu Zhuang, Seong Jun Kim, Kyle D W Vollett, Zijian Lou, Jian Wang, Hai-Ying Mary Cheng, Mohamad Khazaei, Michael G Fehlings, Hai-Ling Margaret Cheng","doi":"10.1093/stcltm/szae016","DOIUrl":null,"url":null,"abstract":"<p><p>Human neural progenitor cells (hNPCs) hold promise for treating spinal cord injury. Studies to date have focused on improving their regenerative potential and therapeutic effect. Equally important is ensuring successful delivery and engraftment of hNPCs at the injury site. Unfortunately, no current imaging solution for cell tracking is compatible with long-term monitoring in vivo. The objective of this study was to apply a novel bright-ferritin magnetic resonance imaging (MRI) mechanism to track hNPC transplants longitudinally and on demand in the rat spinal cord. We genetically modified hNPCs to stably overexpress human ferritin. Ferritin-overexpressing (FT) hNPCs labeled with 0.2 mM manganese provided significant T1-induced bright contrast on in vitro MRI, with no adverse effect on cell viability, morphology, proliferation, and differentiation. In vivo, 2 M cells were injected into the cervical spinal cord of Rowett nude rats. MRI employed T1-weighted acquisitions and T1 mapping on a 3 T scanner. Conventional short-term cell tracking was performed using exogenous Mn labeling prior to cell transplantation, which displayed transient bright contrast on MRI 1 day after cell transplantation and disappeared after 1 week. In contrast, long-term cell tracking using bright-ferritin allowed on-demand signal recall upon Mn supplementation and precise visualization of the surviving hNPC graft. In fact, this new cell tracking technology identified 7 weeks post-transplantation as the timepoint by which substantial hNPC integration occurred. Spatial distribution of hNPCs on MRI matched that on histology. In summary, bright-ferritin provides the first demonstration of long-term, on-demand, high-resolution, and specific tracking of hNPCs in the rat spinal cord.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"546-558"},"PeriodicalIF":5.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165155/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szae016","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Human neural progenitor cells (hNPCs) hold promise for treating spinal cord injury. Studies to date have focused on improving their regenerative potential and therapeutic effect. Equally important is ensuring successful delivery and engraftment of hNPCs at the injury site. Unfortunately, no current imaging solution for cell tracking is compatible with long-term monitoring in vivo. The objective of this study was to apply a novel bright-ferritin magnetic resonance imaging (MRI) mechanism to track hNPC transplants longitudinally and on demand in the rat spinal cord. We genetically modified hNPCs to stably overexpress human ferritin. Ferritin-overexpressing (FT) hNPCs labeled with 0.2 mM manganese provided significant T1-induced bright contrast on in vitro MRI, with no adverse effect on cell viability, morphology, proliferation, and differentiation. In vivo, 2 M cells were injected into the cervical spinal cord of Rowett nude rats. MRI employed T1-weighted acquisitions and T1 mapping on a 3 T scanner. Conventional short-term cell tracking was performed using exogenous Mn labeling prior to cell transplantation, which displayed transient bright contrast on MRI 1 day after cell transplantation and disappeared after 1 week. In contrast, long-term cell tracking using bright-ferritin allowed on-demand signal recall upon Mn supplementation and precise visualization of the surviving hNPC graft. In fact, this new cell tracking technology identified 7 weeks post-transplantation as the timepoint by which substantial hNPC integration occurred. Spatial distribution of hNPCs on MRI matched that on histology. In summary, bright-ferritin provides the first demonstration of long-term, on-demand, high-resolution, and specific tracking of hNPCs in the rat spinal cord.
期刊介绍:
STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal.
STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes.
The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.