{"title":"Mendelian randomization analysis using multiple biomarkers of an underlying common exposure.","authors":"Jin Jin, Guanghao Qi, Zhi Yu, Nilanjan Chatterjee","doi":"10.1093/biostatistics/kxae006","DOIUrl":null,"url":null,"abstract":"<p><p>Mendelian randomization (MR) analysis is increasingly popular for testing the causal effect of exposures on disease outcomes using data from genome-wide association studies. In some settings, the underlying exposure, such as systematic inflammation, may not be directly observable, but measurements can be available on multiple biomarkers or other types of traits that are co-regulated by the exposure. We propose a method for MR analysis on latent exposures (MRLE), which tests the significance for, and the direction of, the effect of a latent exposure by leveraging information from multiple related traits. The method is developed by constructing a set of estimating functions based on the second-order moments of GWAS summary association statistics for the observable traits, under a structural equation model where genetic variants are assumed to have indirect effects through the latent exposure and potentially direct effects on the traits. Simulation studies show that MRLE has well-controlled type I error rates and enhanced power compared to single-trait MR tests under various types of pleiotropy. Applications of MRLE using genetic association statistics across five inflammatory biomarkers (CRP, IL-6, IL-8, TNF-α, and MCP-1) provide evidence for potential causal effects of inflammation on increasing the risk of coronary artery disease, colorectal cancer, and rheumatoid arthritis, while standard MR analysis for individual biomarkers fails to detect consistent evidence for such effects.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mendelian randomization (MR) analysis is increasingly popular for testing the causal effect of exposures on disease outcomes using data from genome-wide association studies. In some settings, the underlying exposure, such as systematic inflammation, may not be directly observable, but measurements can be available on multiple biomarkers or other types of traits that are co-regulated by the exposure. We propose a method for MR analysis on latent exposures (MRLE), which tests the significance for, and the direction of, the effect of a latent exposure by leveraging information from multiple related traits. The method is developed by constructing a set of estimating functions based on the second-order moments of GWAS summary association statistics for the observable traits, under a structural equation model where genetic variants are assumed to have indirect effects through the latent exposure and potentially direct effects on the traits. Simulation studies show that MRLE has well-controlled type I error rates and enhanced power compared to single-trait MR tests under various types of pleiotropy. Applications of MRLE using genetic association statistics across five inflammatory biomarkers (CRP, IL-6, IL-8, TNF-α, and MCP-1) provide evidence for potential causal effects of inflammation on increasing the risk of coronary artery disease, colorectal cancer, and rheumatoid arthritis, while standard MR analysis for individual biomarkers fails to detect consistent evidence for such effects.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.