Sunaina Chaurasiya , Raghu Solanki , Mohd Athar , Ashok Kumar Jangid , Sunita Patel , Prakash C. Jha , Deep Pooja , Hitesh Kulhari
{"title":"Experimental and computational characterization of p-Sulfocalix[4]arene mediated delivery system for morin hydrate","authors":"Sunaina Chaurasiya , Raghu Solanki , Mohd Athar , Ashok Kumar Jangid , Sunita Patel , Prakash C. Jha , Deep Pooja , Hitesh Kulhari","doi":"10.1016/j.medidd.2024.100180","DOIUrl":null,"url":null,"abstract":"<div><p>Calix[n]arene is a class of macrocyclic compounds and has been investigated to improve the physicochemical properties of water insoluble molecules. In this work, a complex of morin hydrate (MH) drug was prepared using p-sulfocalix[4]arene (SC[4]A) as complexing agent to increase its water solubility, dissolution rate and stability. Solvent evaporation methanol was used to prepare the inclusion complex (MH-SC[4]A) between pure MH and SC[4]A and analysed by FTIR, NMR, UV, DLS, TEM, and DSC techniques. Concentration-dependent solubility study showed 22 folds enhancement of MH at 8 mM concentration of SC[4]A. The <em>in vitro</em> anticancer efficacy of MH against A549 cells was increased after complex formation. AO/EtBr staining study showed the more apoptosis mediated anticancer activity than native MH. Molecular geometry, stabilizing interactions, release behaviour and full-unwinding pathway of the complex were characterized by the computed Potential of Mean Force (PMF) using extended umbrella sampling. The combined computational and experimental data confirmed that our designed MH-SC[4]A complex could be utilized as a promising drug delivery carrier for hydrophobic MH.</p></div>","PeriodicalId":33528,"journal":{"name":"Medicine in Drug Discovery","volume":"22 ","pages":"Article 100180"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590098624000058/pdfft?md5=673fcfeb90f34f8122e3a96ac47d884e&pid=1-s2.0-S2590098624000058-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine in Drug Discovery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590098624000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Calix[n]arene is a class of macrocyclic compounds and has been investigated to improve the physicochemical properties of water insoluble molecules. In this work, a complex of morin hydrate (MH) drug was prepared using p-sulfocalix[4]arene (SC[4]A) as complexing agent to increase its water solubility, dissolution rate and stability. Solvent evaporation methanol was used to prepare the inclusion complex (MH-SC[4]A) between pure MH and SC[4]A and analysed by FTIR, NMR, UV, DLS, TEM, and DSC techniques. Concentration-dependent solubility study showed 22 folds enhancement of MH at 8 mM concentration of SC[4]A. The in vitro anticancer efficacy of MH against A549 cells was increased after complex formation. AO/EtBr staining study showed the more apoptosis mediated anticancer activity than native MH. Molecular geometry, stabilizing interactions, release behaviour and full-unwinding pathway of the complex were characterized by the computed Potential of Mean Force (PMF) using extended umbrella sampling. The combined computational and experimental data confirmed that our designed MH-SC[4]A complex could be utilized as a promising drug delivery carrier for hydrophobic MH.