{"title":"An optimal deployment strategy for multi-plane satellite constellation using a generalized non-planar maneuver","authors":"Majid Bakhtiari, Ehsan Abbasali","doi":"10.1007/s10509-024-04288-5","DOIUrl":null,"url":null,"abstract":"<div><p>Satellite constellation deployment is a cohesive mission where the trajectories of satellites must be planned concurrently. This paper presents an Integrated Program for Optimal Deployment of a Satellite Constellation (PODSC) consisting of <span>\\(m\\)</span> non-identical satellites in any desired arrangement in <span>\\(n\\)</span> orbital planes. The PODSC can optimize the scheduling of mission timelines, ensuring effective coordination with the trajectory of each satellite. This involves meticulous planning that considers temporal constraints and regards collision avoidance constraint. Additionally, the PODSC can select the most favorable deployment strategy, considering the trade-offs between time and fuel consumption across all possible deployment methods. The PODSC also utilizes an innovative Perturbed Multi-impulsive Inclined transfer trajectory Amalgamated with a modified Lambert targeting problem (PMIAL). The main idea of designing the mentioned maneuver is to eliminate the defects of the Lambert Targeting Problem (LTP). The LTP cannot account for space perturbations. Moreover, the LTP faces challenges when attempting to align the transfer trajectory tangentially with the final orbit in situations where there exists a substantial disparity in inclination and right ascension between the initial and final orbits. The PMIAL establishes three consecutive steps to fix the mentioned defects. Balancing the trade-off between time and achieving optimal fuel consumption will be possible by applying a hybrid IWO/PSO (The hybrid Invasive Weed Optimization/Particle Swarm Optimization) optimization algorithm in both PMIAL and PODSC. The case study will involve simulating two constellation deployment missions, with a particular focus on considering the Earth’s oblateness as a notable perturbation; however, the proposed algorithms can consider any space perturbations.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04288-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Satellite constellation deployment is a cohesive mission where the trajectories of satellites must be planned concurrently. This paper presents an Integrated Program for Optimal Deployment of a Satellite Constellation (PODSC) consisting of \(m\) non-identical satellites in any desired arrangement in \(n\) orbital planes. The PODSC can optimize the scheduling of mission timelines, ensuring effective coordination with the trajectory of each satellite. This involves meticulous planning that considers temporal constraints and regards collision avoidance constraint. Additionally, the PODSC can select the most favorable deployment strategy, considering the trade-offs between time and fuel consumption across all possible deployment methods. The PODSC also utilizes an innovative Perturbed Multi-impulsive Inclined transfer trajectory Amalgamated with a modified Lambert targeting problem (PMIAL). The main idea of designing the mentioned maneuver is to eliminate the defects of the Lambert Targeting Problem (LTP). The LTP cannot account for space perturbations. Moreover, the LTP faces challenges when attempting to align the transfer trajectory tangentially with the final orbit in situations where there exists a substantial disparity in inclination and right ascension between the initial and final orbits. The PMIAL establishes three consecutive steps to fix the mentioned defects. Balancing the trade-off between time and achieving optimal fuel consumption will be possible by applying a hybrid IWO/PSO (The hybrid Invasive Weed Optimization/Particle Swarm Optimization) optimization algorithm in both PMIAL and PODSC. The case study will involve simulating two constellation deployment missions, with a particular focus on considering the Earth’s oblateness as a notable perturbation; however, the proposed algorithms can consider any space perturbations.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.