Antonio Bellon, Didier Henrion, Vyacheslav Kungurtsev, Jakub Mareček
{"title":"Parametric Semidefinite Programming: Geometry of the Trajectory of Solutions","authors":"Antonio Bellon, Didier Henrion, Vyacheslav Kungurtsev, Jakub Mareček","doi":"10.1287/moor.2021.0097","DOIUrl":null,"url":null,"abstract":"In many applications, solutions of convex optimization problems are updated on-line, as functions of time. In this paper, we consider parametric semidefinite programs, which are linear optimization problems in the semidefinite cone whose coefficients (input data) depend on a time parameter. We are interested in the geometry of the solution (output data) trajectory, defined as the set of solutions depending on the parameter. We propose an exhaustive description of the geometry of the solution trajectory. As our main result, we show that only six distinct behaviors can be observed at a neighborhood of a given point along the solution trajectory. Each possible behavior is then illustrated by an example.Funding: This work was supported by OP RDE [Grant CZ.02.1.01/0.0/0.0/16_019/0000765].","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"86 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2021.0097","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In many applications, solutions of convex optimization problems are updated on-line, as functions of time. In this paper, we consider parametric semidefinite programs, which are linear optimization problems in the semidefinite cone whose coefficients (input data) depend on a time parameter. We are interested in the geometry of the solution (output data) trajectory, defined as the set of solutions depending on the parameter. We propose an exhaustive description of the geometry of the solution trajectory. As our main result, we show that only six distinct behaviors can be observed at a neighborhood of a given point along the solution trajectory. Each possible behavior is then illustrated by an example.Funding: This work was supported by OP RDE [Grant CZ.02.1.01/0.0/0.0/16_019/0000765].
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.