Youngkwang Moon, Hui Hun Cho, Hyeokgyun Moon, Hyewon Song, Jae Chul Ro, Jung Heon Lee, Jinkee Lee
{"title":"Simultaneous Triplex Detection in a Single-Test-Line Lateral Flow Immunoassay Utilizing Distinct Nanoparticle Colorimetry","authors":"Youngkwang Moon, Hui Hun Cho, Hyeokgyun Moon, Hyewon Song, Jae Chul Ro, Jung Heon Lee, Jinkee Lee","doi":"10.1007/s13206-024-00140-8","DOIUrl":null,"url":null,"abstract":"<p>Lateral flow immunoassay (LFIA) has become a popular method for the rapid detection of biological molecules, with an emerging need for multiplex detection capabilities. A novel LFIA device capable of simultaneously detecting three different antigens on a single test line was developed, with each antigen identifiable by a unique color. Gold nanoparticles (AuNPs; red), gold nanorods (AuNRs; blue), and silver nanoparticles (AgNPs; yellow) were engineered to flow concurrently within the LFIA device and specifically react with α-fetoprotein (AFP), neuron-specific enolase (NSE), and carcinoembryonic antigen (CEA) on the test line. The device was effective for both individual and simultaneous detection of the analytes, with a limit of detection (LOD) of 50 ng/mL. Given its rapid response, ease of use, and affordability, this multiplex detection LFIA device shows great potential for a wide range of applications, including food quality management, livestock diagnosis, and health and environmental monitoring.</p>","PeriodicalId":8768,"journal":{"name":"BioChip Journal","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioChip Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13206-024-00140-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Lateral flow immunoassay (LFIA) has become a popular method for the rapid detection of biological molecules, with an emerging need for multiplex detection capabilities. A novel LFIA device capable of simultaneously detecting three different antigens on a single test line was developed, with each antigen identifiable by a unique color. Gold nanoparticles (AuNPs; red), gold nanorods (AuNRs; blue), and silver nanoparticles (AgNPs; yellow) were engineered to flow concurrently within the LFIA device and specifically react with α-fetoprotein (AFP), neuron-specific enolase (NSE), and carcinoembryonic antigen (CEA) on the test line. The device was effective for both individual and simultaneous detection of the analytes, with a limit of detection (LOD) of 50 ng/mL. Given its rapid response, ease of use, and affordability, this multiplex detection LFIA device shows great potential for a wide range of applications, including food quality management, livestock diagnosis, and health and environmental monitoring.
期刊介绍:
BioChip Journal publishes original research and reviews in all areas of the biochip technology in the following disciplines, including protein chip, DNA chip, cell chip, lab-on-a-chip, bio-MEMS, biosensor, micro/nano mechanics, microfluidics, high-throughput screening technology, medical science, genomics, proteomics, bioinformatics, medical diagnostics, environmental monitoring and micro/nanotechnology. The Journal is committed to rapid peer review to ensure the publication of highest quality original research and timely news and review articles.