Large-scale digital signatures of emotional response to the COVID-19 vaccination campaign

IF 3 2区 计算机科学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS EPJ Data Science Pub Date : 2024-03-08 DOI:10.1140/epjds/s13688-024-00452-7
{"title":"Large-scale digital signatures of emotional response to the COVID-19 vaccination campaign","authors":"","doi":"10.1140/epjds/s13688-024-00452-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The same individuals can express very different emotions in online social media with respect to face-to-face interactions, partially because of intrinsic limitations of the digital environments and partially because of their algorithmic design, which is optimized to maximize engagement. Such differences become even more pronounced for topics concerning socially sensitive and polarizing issues, such as massive pharmaceutical interventions. Here, we investigate how online emotional responses change during the large-scale COVID-19 vaccination campaign with respect to a baseline in which no specific contentious topic dominates. We show that the online discussions during the pandemic generate a vast spectrum of emotional response compared to the baseline, especially when we take into account the characteristics of the users and the type of information shared in the online platform. Furthermore, we analyze the role of the political orientation of shared news, whose circulation seems to be driven not only by their actual informational content but also by the social need to strengthen one’s affiliation to, and positioning within, a specific online community by means of emotionally arousing posts. Our findings stress the importance of better understanding the emotional reactions to contentious topics at scale from digital signatures, while providing a more quantitative assessment of the ongoing online social dynamics to build a faithful picture of offline social implications.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"35 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-024-00452-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The same individuals can express very different emotions in online social media with respect to face-to-face interactions, partially because of intrinsic limitations of the digital environments and partially because of their algorithmic design, which is optimized to maximize engagement. Such differences become even more pronounced for topics concerning socially sensitive and polarizing issues, such as massive pharmaceutical interventions. Here, we investigate how online emotional responses change during the large-scale COVID-19 vaccination campaign with respect to a baseline in which no specific contentious topic dominates. We show that the online discussions during the pandemic generate a vast spectrum of emotional response compared to the baseline, especially when we take into account the characteristics of the users and the type of information shared in the online platform. Furthermore, we analyze the role of the political orientation of shared news, whose circulation seems to be driven not only by their actual informational content but also by the social need to strengthen one’s affiliation to, and positioning within, a specific online community by means of emotionally arousing posts. Our findings stress the importance of better understanding the emotional reactions to contentious topics at scale from digital signatures, while providing a more quantitative assessment of the ongoing online social dynamics to build a faithful picture of offline social implications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID-19 疫苗接种活动情绪反应的大规模数字特征
摘要 同样是一个人,在网络社交媒体上表达的情感与面对面交流时可能大相径庭,部分原因是数字环境的内在限制,部分原因是算法设计的优化,以最大限度地提高参与度。对于涉及社会敏感和两极分化问题的话题,如大规模的药物干预,这种差异会变得更加明显。在此,我们研究了在大规模 COVID-19 疫苗接种活动期间,相对于没有特定争议话题主导的基线,在线情绪反应是如何变化的。我们的研究表明,与基线相比,大流行病期间的在线讨论产生了广泛的情绪反应,特别是当我们考虑到用户的特点和在线平台上共享的信息类型时。此外,我们还分析了所分享新闻的政治取向所起的作用,这些新闻的传播似乎不仅受其实际信息内容的驱动,而且还受社会需求的驱动,即通过煽动情绪的帖子来加强个人对特定网络社区的归属感和定位。我们的研究结果强调了从数字签名中更好地理解对有争议话题的大规模情绪反应的重要性,同时对正在进行的在线社会动态进行了更加量化的评估,以建立对离线社会影响的忠实描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPJ Data Science
EPJ Data Science MATHEMATICS, INTERDISCIPLINARY APPLICATIONS -
CiteScore
6.10
自引率
5.60%
发文量
53
审稿时长
13 weeks
期刊介绍: EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.
期刊最新文献
Estimating work engagement from online chat tools Language and the use of law are predictive of judge gender and seniority Connection between climatic change and international food prices: evidence from robust long-range cross-correlation and variable-lag transfer entropy with sliding windows approach Keep your friends close, and your enemies closer: structural properties of negative relationships on Twitter Analyzing user ideologies and shared news during the 2019 argentinian elections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1