{"title":"FESAR: SAR ship detection model based on local spatial relationship capture and fused convolutional enhancement","authors":"Chongchong Liu, Chunman Yan","doi":"10.1007/s00138-024-01516-4","DOIUrl":null,"url":null,"abstract":"<p>Synthetic aperture radar (SAR) is instrumental in ship monitoring owing to its all-weather capabilities and high resolution. In SAR images, ship targets frequently display blurred or mixed boundaries with the background, and instances of occlusion or partial occlusion may occur. Additionally, multi-scale transformations and small-target ships pose challenges for ship detection. To tackle these challenges, we propose a novel SAR ship detection model, FESAR. Firstly, in addressing multi-scale transformations in ship detection, we propose the Fused Convolution Enhancement Module (FCEM). This network incorporates distinct convolutional branches designed to capture local and global features, which are subsequently fused and enhanced. Secondly, a Spatial Relationship Analysis Module (SRAM) with a spatial-mixing layer is designed to analyze the local spatial relationship between the ship target and the background, effectively combining local information to discern feature distinctions between the ship target and the background. Finally, a new backbone network, SPD-YOLO, is designed to perform deep downsampling for the comprehensive extraction of semantic information related to ships. To validate the model’s performance, an extensive series of experiments was conducted on the public datasets HRSID, LS-SSDD-v1.0, and SSDD. The results demonstrate the outstanding performance of the proposed FESAR model compared to numerous state-of-the-art (SOTA) models. Relative to the baseline model, FESAR exhibits an improvement in mAP by 2.6% on the HRSID dataset, 5.5% on LS-SSDD-v1.0, and 0.2% on the SSDD dataset. In comparison with numerous SAR ship detection models, FESAR demonstrates superior comprehensive performance.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"52 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01516-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic aperture radar (SAR) is instrumental in ship monitoring owing to its all-weather capabilities and high resolution. In SAR images, ship targets frequently display blurred or mixed boundaries with the background, and instances of occlusion or partial occlusion may occur. Additionally, multi-scale transformations and small-target ships pose challenges for ship detection. To tackle these challenges, we propose a novel SAR ship detection model, FESAR. Firstly, in addressing multi-scale transformations in ship detection, we propose the Fused Convolution Enhancement Module (FCEM). This network incorporates distinct convolutional branches designed to capture local and global features, which are subsequently fused and enhanced. Secondly, a Spatial Relationship Analysis Module (SRAM) with a spatial-mixing layer is designed to analyze the local spatial relationship between the ship target and the background, effectively combining local information to discern feature distinctions between the ship target and the background. Finally, a new backbone network, SPD-YOLO, is designed to perform deep downsampling for the comprehensive extraction of semantic information related to ships. To validate the model’s performance, an extensive series of experiments was conducted on the public datasets HRSID, LS-SSDD-v1.0, and SSDD. The results demonstrate the outstanding performance of the proposed FESAR model compared to numerous state-of-the-art (SOTA) models. Relative to the baseline model, FESAR exhibits an improvement in mAP by 2.6% on the HRSID dataset, 5.5% on LS-SSDD-v1.0, and 0.2% on the SSDD dataset. In comparison with numerous SAR ship detection models, FESAR demonstrates superior comprehensive performance.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.