{"title":"The design and implementation of multi-character classification scheme based on EEG signals of visual imagery","authors":"Hongguang Pan, Wei Song, Li Li, Xuebin Qin","doi":"10.1007/s11571-024-10087-z","DOIUrl":null,"url":null,"abstract":"<p>In visual-imagery-based brain–computer interface (VI-BCI), there are problems of singleness of imagination task and insufficient description of feature information, which seriously hinder the development and application of VI-BCI technology in the field of restoring communication. In this paper, we design and optimize a multi-character classification scheme based on electroencephalogram (EEG) signals of visual imagery (VI), which is used to classify 29 characters including 26 lowercase English letters and three punctuation marks. Firstly, a new paradigm of randomly presenting characters and including preparation stage is designed to acquire EEG signals and construct a multi-character dataset, which can eliminate the influence between VI tasks. Secondly, tensor data is obtained by the Morlet wavelet transform, and a feature extraction algorithm based on tensor—uncorrelated multilinear principal component analysis is used to extract high-quality features. Finally, three classifiers, namely support vector machine, K-nearest neighbor, and extreme learning machine, are employed for classifying multi-character, and the results are compared. The experimental results demonstrate that, the proposed scheme effectively extracts character features with minimal redundancy, weak correlation, and strong representation capability, and successfully achieves an average classification accuracy 97.59% for 29 characters, surpassing existing research in terms of both accuracy and quantity of classification. The present study designs a new paradigm for acquiring EEG signals of VI, and combines the Morlet wavelet transform and UMPCA algorithm to extract the character features, enabling multi-character classification in various classifiers. This research paves a novel pathway for establishing direct brain-to-world communication.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"54 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10087-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In visual-imagery-based brain–computer interface (VI-BCI), there are problems of singleness of imagination task and insufficient description of feature information, which seriously hinder the development and application of VI-BCI technology in the field of restoring communication. In this paper, we design and optimize a multi-character classification scheme based on electroencephalogram (EEG) signals of visual imagery (VI), which is used to classify 29 characters including 26 lowercase English letters and three punctuation marks. Firstly, a new paradigm of randomly presenting characters and including preparation stage is designed to acquire EEG signals and construct a multi-character dataset, which can eliminate the influence between VI tasks. Secondly, tensor data is obtained by the Morlet wavelet transform, and a feature extraction algorithm based on tensor—uncorrelated multilinear principal component analysis is used to extract high-quality features. Finally, three classifiers, namely support vector machine, K-nearest neighbor, and extreme learning machine, are employed for classifying multi-character, and the results are compared. The experimental results demonstrate that, the proposed scheme effectively extracts character features with minimal redundancy, weak correlation, and strong representation capability, and successfully achieves an average classification accuracy 97.59% for 29 characters, surpassing existing research in terms of both accuracy and quantity of classification. The present study designs a new paradigm for acquiring EEG signals of VI, and combines the Morlet wavelet transform and UMPCA algorithm to extract the character features, enabling multi-character classification in various classifiers. This research paves a novel pathway for establishing direct brain-to-world communication.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.