The design and implementation of multi-character classification scheme based on EEG signals of visual imagery

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES Cognitive Neurodynamics Pub Date : 2024-03-09 DOI:10.1007/s11571-024-10087-z
Hongguang Pan, Wei Song, Li Li, Xuebin Qin
{"title":"The design and implementation of multi-character classification scheme based on EEG signals of visual imagery","authors":"Hongguang Pan, Wei Song, Li Li, Xuebin Qin","doi":"10.1007/s11571-024-10087-z","DOIUrl":null,"url":null,"abstract":"<p>In visual-imagery-based brain–computer interface (VI-BCI), there are problems of singleness of imagination task and insufficient description of feature information, which seriously hinder the development and application of VI-BCI technology in the field of restoring communication. In this paper, we design and optimize a multi-character classification scheme based on electroencephalogram (EEG) signals of visual imagery (VI), which is used to classify 29 characters including 26 lowercase English letters and three punctuation marks. Firstly, a new paradigm of randomly presenting characters and including preparation stage is designed to acquire EEG signals and construct a multi-character dataset, which can eliminate the influence between VI tasks. Secondly, tensor data is obtained by the Morlet wavelet transform, and a feature extraction algorithm based on tensor—uncorrelated multilinear principal component analysis is used to extract high-quality features. Finally, three classifiers, namely support vector machine, K-nearest neighbor, and extreme learning machine, are employed for classifying multi-character, and the results are compared. The experimental results demonstrate that, the proposed scheme effectively extracts character features with minimal redundancy, weak correlation, and strong representation capability, and successfully achieves an average classification accuracy 97.59% for 29 characters, surpassing existing research in terms of both accuracy and quantity of classification. The present study designs a new paradigm for acquiring EEG signals of VI, and combines the Morlet wavelet transform and UMPCA algorithm to extract the character features, enabling multi-character classification in various classifiers. This research paves a novel pathway for establishing direct brain-to-world communication.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"54 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10087-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In visual-imagery-based brain–computer interface (VI-BCI), there are problems of singleness of imagination task and insufficient description of feature information, which seriously hinder the development and application of VI-BCI technology in the field of restoring communication. In this paper, we design and optimize a multi-character classification scheme based on electroencephalogram (EEG) signals of visual imagery (VI), which is used to classify 29 characters including 26 lowercase English letters and three punctuation marks. Firstly, a new paradigm of randomly presenting characters and including preparation stage is designed to acquire EEG signals and construct a multi-character dataset, which can eliminate the influence between VI tasks. Secondly, tensor data is obtained by the Morlet wavelet transform, and a feature extraction algorithm based on tensor—uncorrelated multilinear principal component analysis is used to extract high-quality features. Finally, three classifiers, namely support vector machine, K-nearest neighbor, and extreme learning machine, are employed for classifying multi-character, and the results are compared. The experimental results demonstrate that, the proposed scheme effectively extracts character features with minimal redundancy, weak correlation, and strong representation capability, and successfully achieves an average classification accuracy 97.59% for 29 characters, surpassing existing research in terms of both accuracy and quantity of classification. The present study designs a new paradigm for acquiring EEG signals of VI, and combines the Morlet wavelet transform and UMPCA algorithm to extract the character features, enabling multi-character classification in various classifiers. This research paves a novel pathway for establishing direct brain-to-world communication.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉图像脑电信号的多字符分类方案的设计与实现
在基于视觉意象的脑机接口(VI-BCI)中,存在想象任务单一、特征信息描述不足等问题,严重阻碍了VI-BCI技术在恢复交流领域的发展和应用。本文设计并优化了一种基于视觉意象(VI)脑电图(EEG)信号的多字符分类方案,用于对包括 26 个小写英文字母和 3 个标点符号在内的 29 个字符进行分类。首先,设计了一种随机呈现字符并包括准备阶段的新范例来获取脑电信号并构建多字符数据集,从而消除了 VI 任务之间的影响。其次,通过 Morlet 小波变换获得张量数据,并使用基于张量非相关多线性主成分分析的特征提取算法提取高质量特征。最后,采用支持向量机、K-近邻和极端学习机三种分类器对多字符进行分类,并对结果进行比较。实验结果表明,所提出的方案有效地提取了冗余度小、相关性弱、表示能力强的字符特征,并成功实现了 29 个字符的平均分类准确率 97.59%,在分类准确率和分类数量上都超越了现有研究。本研究设计了一种获取 VI 脑电信号的新范式,并结合 Morlet 小波变换和 UMPCA 算法提取字符特征,实现了多种分类器的多字符分类。这项研究为建立大脑与世界的直接交流铺平了新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
期刊最新文献
A memristor-based circuit design of avoidance learning with time delay and its application Perceptual information processing in table tennis players: based on top-down hierarchical predictive coding EEG-based deception detection using weighted dual perspective visibility graph analysis The dynamical behavior effects of different numbers of discrete memristive synaptic coupled neurons Advancements in automated diagnosis of autism spectrum disorder through deep learning and resting-state functional mri biomarkers: a systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1