Investigation of the Benguela upwelling eddies using Lagrangian modeling methods

IF 2.2 3区 地球科学 Q2 OCEANOGRAPHY Ocean Dynamics Pub Date : 2024-03-08 DOI:10.1007/s10236-024-01609-8
Tatyana V. Belonenko, Maksim V. Budyansky, Avelina F. Akhtyamova, Alexander A. Udalov
{"title":"Investigation of the Benguela upwelling eddies using Lagrangian modeling methods","authors":"Tatyana V. Belonenko, Maksim V. Budyansky, Avelina F. Akhtyamova, Alexander A. Udalov","doi":"10.1007/s10236-024-01609-8","DOIUrl":null,"url":null,"abstract":"<p>In this research, we utilize AVISO altimetry data, the GLORYS12V1 product, and the META3.2 DT Atlas to investigate the Benguela upwelling. By combining these three datasets, we explore the propagation of mesoscale eddies generated within the upwelling zone and examine the dispersion of particles originating from the upwelling zone. The geographical scope of our analysis is confined to the region between 10–36°S and 0–20°E. We employ Lagrangian analysis and the AMEDA approach to study the eddies formed in the upwelling zone. The diverse methods applied enable us to track the movement of upwelling fluid elements in the specified area. The identification of the upwelling zone relies on temperature and salinity gradients in the coastal region. The primary focus of this study revolves around mesoscale eddies emerging in the upwelling zone. We scrutinize the trajectories of cyclones and anticyclones as they propagate westward from the upwelling zone, highlighting variations in the number of upwelling-origin particles within these eddies. We observe distinctions in the locations of upwelling cells between cyclones and anticyclones. Our results indicate that among mesoscale eddies generated in the upwelling zone cyclones predominate. We show that Lagrangian particles, leaving the upwelling zone, propagate throughout the area under consideration. For these particles, we can determine the travel time from the upwelling zone from 1 to 365 days and distances of 500 km for cyclones and 300 km for anticyclones. We found that cyclones are more stable structures with a longer lifetime and with a longer distance traveled in contrast to anticyclones. We believe this is a distinctive feature of the eddies with upwelling origins in comparison with other mesoscale eddies in the area. Finally, we analyze the change of water properties inside the eddies after they leave the upwelling zone and show a significant renewal of vortex cores occurring after 1–2 months of their life.</p>","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10236-024-01609-8","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, we utilize AVISO altimetry data, the GLORYS12V1 product, and the META3.2 DT Atlas to investigate the Benguela upwelling. By combining these three datasets, we explore the propagation of mesoscale eddies generated within the upwelling zone and examine the dispersion of particles originating from the upwelling zone. The geographical scope of our analysis is confined to the region between 10–36°S and 0–20°E. We employ Lagrangian analysis and the AMEDA approach to study the eddies formed in the upwelling zone. The diverse methods applied enable us to track the movement of upwelling fluid elements in the specified area. The identification of the upwelling zone relies on temperature and salinity gradients in the coastal region. The primary focus of this study revolves around mesoscale eddies emerging in the upwelling zone. We scrutinize the trajectories of cyclones and anticyclones as they propagate westward from the upwelling zone, highlighting variations in the number of upwelling-origin particles within these eddies. We observe distinctions in the locations of upwelling cells between cyclones and anticyclones. Our results indicate that among mesoscale eddies generated in the upwelling zone cyclones predominate. We show that Lagrangian particles, leaving the upwelling zone, propagate throughout the area under consideration. For these particles, we can determine the travel time from the upwelling zone from 1 to 365 days and distances of 500 km for cyclones and 300 km for anticyclones. We found that cyclones are more stable structures with a longer lifetime and with a longer distance traveled in contrast to anticyclones. We believe this is a distinctive feature of the eddies with upwelling origins in comparison with other mesoscale eddies in the area. Finally, we analyze the change of water properties inside the eddies after they leave the upwelling zone and show a significant renewal of vortex cores occurring after 1–2 months of their life.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用拉格朗日建模方法研究本格拉上升流漩涡
在这项研究中,我们利用 AVISO 测高数据、GLORYS12V1 产品和 META3.2 DT 图集来研究本格拉上升流。通过结合这三个数据集,我们探索了上升流区内产生的中尺度漩涡的传播情况,并研究了源自上升流区的粒子的扩散情况。我们分析的地理范围仅限于南纬 10-36 度和东经 0-20 度之间的区域。我们采用拉格朗日分析和 AMEDA 方法来研究上升流区形成的漩涡。所采用的各种方法使我们能够跟踪指定区域内上升流流体要素的运动。上涌区的确定依赖于沿岸地区的温度和盐度梯度。本研究的主要重点是在上升流区出现的中尺度漩涡。我们仔细研究了气旋和反气旋从上升流区向西传播的轨迹,突出了这些漩涡中源于上升流的粒子数量的变化。我们观察到气旋和反气旋之间上升流细胞位置的差异。我们的研究结果表明,在上升流区产生的中尺度涡旋中,气旋占主导地位。我们发现,离开上升流区的拉格朗日粒子会在整个区域内传播。对于这些粒子,我们可以确定从上升流区出发的时间为 1 到 365 天,气旋的传播距离为 500 千米,反气旋的传播距离为 300 千米。我们发现,与反气旋相比,气旋是更稳定的结构,寿命更长,移动距离更远。我们认为,与该地区其他中尺度漩涡相比,这是源于上升流的漩涡的一个显著特征。最后,我们分析了漩涡离开上升流区后内部水属性的变化,结果表明漩涡核心在其生命周期的 1-2 个月后发生了显著的更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ocean Dynamics
Ocean Dynamics 地学-海洋学
CiteScore
5.40
自引率
0.00%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Ocean Dynamics is an international journal that aims to publish high-quality peer-reviewed articles in the following areas of research: Theoretical oceanography (new theoretical concepts that further system understanding with a strong view to applicability for operational or monitoring purposes); Computational oceanography (all aspects of ocean modeling and data analysis); Observational oceanography (new techniques or systematic approaches in measuring oceanic variables, including all aspects of monitoring the state of the ocean); Articles with an interdisciplinary character that encompass research in the fields of biological, chemical and physical oceanography are especially encouraged.
期刊最新文献
A new high-resolution Coastal Ice-Ocean Prediction System for the East Coast of Canada Improvement of drag coefficient parameterization of WAVEWATCH-III using remotely sensed products during tropical cyclones Surface ocean conditions of the Arabian Sea using two different wind forcings in the regional ocean modelling system setup Assessment of tidal current potential in the Amapá’s inner continental shelf (Eastern Amazonia - Brazil) Aggregation and transport of microplastics by a cold-core ring in the southern recirculation of the Kuroshio Extension: the role of mesoscale eddies on plastic debris distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1