ZhiHao Zhang, Jun Wang, Zhuli Zang, Lei Jin, Shengjie Li, Hao Wu, Jian Zhao, Zhang Bo
{"title":"Review and Analysis of RGBT Single Object Tracking Methods: A Fusion Perspective","authors":"ZhiHao Zhang, Jun Wang, Zhuli Zang, Lei Jin, Shengjie Li, Hao Wu, Jian Zhao, Zhang Bo","doi":"10.1145/3651308","DOIUrl":null,"url":null,"abstract":"<p>Visual tracking is a fundamental task in computer vision with significant practical applications in various domains, including surveillance, security, robotics, and human-computer interaction. However, it may face limitations in visible light data, such as low-light environments, occlusion, and camouflage, which can significantly reduce its accuracy. To cope with these challenges, researchers have explored the potential of combining the visible and infrared modalities to improve tracking performance. By leveraging the complementary strengths of visible and infrared data, RGB-infrared fusion tracking has emerged as a promising approach to address these limitations and improve tracking accuracy in challenging scenarios. In this paper, we present a review on RGB-infrared fusion tracking. Specifically, we categorize existing RGBT tracking methods into four categories based on their underlying architectures, feature representations, and fusion strategies, namely feature decoupling based method, feature selecting based method, collaborative graph tracking method, and traditional fusion method. Furthermore, we provide a critical analysis of their strengths, limitations, representative methods, and future research directions. To further demonstrate the advantages and disadvantages of these methods, we present a review of publicly available RGBT tracking datasets and analyze the main results on public datasets. Moreover,we discuss some limitations in RGBT tracking at present and provide some opportunities and future directions for RGBT visual tracking, such as dataset diversity, unsupervised and weakly supervised applications. In conclusion, our survey aims to serve as a useful resource for researchers and practitioners interested in the emerging field of RGBT tracking, and to promote further progress and innovation in this area.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"2 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3651308","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Visual tracking is a fundamental task in computer vision with significant practical applications in various domains, including surveillance, security, robotics, and human-computer interaction. However, it may face limitations in visible light data, such as low-light environments, occlusion, and camouflage, which can significantly reduce its accuracy. To cope with these challenges, researchers have explored the potential of combining the visible and infrared modalities to improve tracking performance. By leveraging the complementary strengths of visible and infrared data, RGB-infrared fusion tracking has emerged as a promising approach to address these limitations and improve tracking accuracy in challenging scenarios. In this paper, we present a review on RGB-infrared fusion tracking. Specifically, we categorize existing RGBT tracking methods into four categories based on their underlying architectures, feature representations, and fusion strategies, namely feature decoupling based method, feature selecting based method, collaborative graph tracking method, and traditional fusion method. Furthermore, we provide a critical analysis of their strengths, limitations, representative methods, and future research directions. To further demonstrate the advantages and disadvantages of these methods, we present a review of publicly available RGBT tracking datasets and analyze the main results on public datasets. Moreover,we discuss some limitations in RGBT tracking at present and provide some opportunities and future directions for RGBT visual tracking, such as dataset diversity, unsupervised and weakly supervised applications. In conclusion, our survey aims to serve as a useful resource for researchers and practitioners interested in the emerging field of RGBT tracking, and to promote further progress and innovation in this area.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.