{"title":"A global Morse index theorem and applications to Jacobi fields on CMC surfaces","authors":"Wu-Hsiung Huang","doi":"10.1142/s0219199723500645","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish a “global” Morse index theorem. Given a hypersurface <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> of constant mean curvature, immersed in <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msup></math></span><span></span>. Consider a continuous deformation of “generalized” Lipschitz domain <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> enlarging in <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span>. The topological type of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is permitted to change along <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>, so that <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> has an arbitrary shape which can “reach afar” in <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span>, i.e. cover any preassigned area. The proof of the global Morse index theorem is reduced to the continuity in <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span> of the Sobolev space <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span> of variation functions on <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, as well as the continuity of eigenvalues of the stability operator. We devise a “detour” strategy by introducing a notion of “set-continuity” of <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> in <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span> to yield the required continuities of <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span> and of eigenvalues. The global Morse index theorem thus follows and provides a structural theorem of the existence of Jacobi fields on domains in <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500645","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we establish a “global” Morse index theorem. Given a hypersurface of constant mean curvature, immersed in . Consider a continuous deformation of “generalized” Lipschitz domain enlarging in . The topological type of is permitted to change along , so that has an arbitrary shape which can “reach afar” in , i.e. cover any preassigned area. The proof of the global Morse index theorem is reduced to the continuity in of the Sobolev space of variation functions on , as well as the continuity of eigenvalues of the stability operator. We devise a “detour” strategy by introducing a notion of “set-continuity” of in to yield the required continuities of and of eigenvalues. The global Morse index theorem thus follows and provides a structural theorem of the existence of Jacobi fields on domains in .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.