Sustainable synthesis of imidazoles using a catalyst-free approach and ethyl lactate as a bio-based green solvent in the Debus-Japp-Radziszewski reaction

IF 1.8 3区 化学 Q3 CHEMISTRY, ORGANIC Synthetic Communications Pub Date : 2024-03-07 DOI:10.1080/00397911.2024.2323999
Flavia Martins da Silva , Joel Jones Junior , July A. Hernández Muñoz , Priscila Nogueira de Azevedo
{"title":"Sustainable synthesis of imidazoles using a catalyst-free approach and ethyl lactate as a bio-based green solvent in the Debus-Japp-Radziszewski reaction","authors":"Flavia Martins da Silva ,&nbsp;Joel Jones Junior ,&nbsp;July A. Hernández Muñoz ,&nbsp;Priscila Nogueira de Azevedo","doi":"10.1080/00397911.2024.2323999","DOIUrl":null,"url":null,"abstract":"<div><p>A highly substituted family of imidazoles is effectively obtained through the Debus-Japp-Radziszewski reaction. In this process, benzil, ammonium acetate, and various benzaldehydes react in a particularly notable solvent: ethyl lactate (EL). This bio-based solvent, derived from biomass fermentation, stands out not only for its sustainable origin but also for its remarkable properties. Ethyl lactate is biodegradable, health-risk-free, is easily recyclable, and is non-corrosive, categorizing it as an exemplary green solvent. The multicomponent reaction, carried out under these conditions, eliminates the need for a catalyst, resulting in products with good yields. The isolation of the products is very simple, requiring only filtration, as they are insoluble in the solvent. In this way, this methodology aligns with various principles of green chemistry, emphasizing the strategic choice of ethyl lactate. This choice has a positive impact on the synthesis of imidazoles, well-known for their pharmacological properties.</p></div>","PeriodicalId":22119,"journal":{"name":"Synthetic Communications","volume":"54 7","pages":"Pages 592-599"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0039791124000183","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

A highly substituted family of imidazoles is effectively obtained through the Debus-Japp-Radziszewski reaction. In this process, benzil, ammonium acetate, and various benzaldehydes react in a particularly notable solvent: ethyl lactate (EL). This bio-based solvent, derived from biomass fermentation, stands out not only for its sustainable origin but also for its remarkable properties. Ethyl lactate is biodegradable, health-risk-free, is easily recyclable, and is non-corrosive, categorizing it as an exemplary green solvent. The multicomponent reaction, carried out under these conditions, eliminates the need for a catalyst, resulting in products with good yields. The isolation of the products is very simple, requiring only filtration, as they are insoluble in the solvent. In this way, this methodology aligns with various principles of green chemistry, emphasizing the strategic choice of ethyl lactate. This choice has a positive impact on the synthesis of imidazoles, well-known for their pharmacological properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 Debus-Japp-Radziszewski 反应中使用无催化剂方法和作为生物基绿色溶剂的乳酸乙酯可持续合成咪唑类化合物
通过 Debus-Japp-Radziszewski 反应可以有效地获得高度取代的咪唑系列。在这一过程中,苯齐尔、醋酸铵和各种苯甲醛会发生部分反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Synthetic Communications
Synthetic Communications 化学-有机化学
CiteScore
4.40
自引率
4.80%
发文量
156
审稿时长
4.3 months
期刊介绍: Synthetic Communications presents communications describing new methods, reagents, and other synthetic work pertaining to organic chemistry with sufficient experimental detail to permit reported reactions to be repeated by a chemist reasonably skilled in the art. In addition, the Journal features short, focused review articles discussing topics within its remit of synthetic organic chemistry.
期刊最新文献
Synthesis and antioxidant activity of 14-Aryl-14H-dibenzo[a,j] xanthene’s and bis(3-hydroxy-5,5′-dimethyl-2-cyclohexene-1-ones) derivatives using silica-tungstosulfonic acid catalyst Novel and efficient process for the synthesis of 1,3,4-oxadiazole containing MBX-4132 as antimicrobial agent in Neisseria gonorrhoeae Novel Schiff bases of quinolin-4(1h)-one: Synthesis, antiproliferative evaluation, apoptosis, cell cycle, autophagy and molecular docking studies in human colon cancer cells Development of an improved and facile synthesis route of the FGFR inhibitor erdafitinib An efficient and practical synthesis of ferroptosis inducer erastin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1