Shijun Huang, Suyu Zhai, Wenzhong Lai, Kai Chen, Wangchuan Xiao, Jiwei Chen, Jida Bu
{"title":"Synthesis, thermal stability, and degradation kinetics of a novel boron-containing novolac based on triphenyl borate","authors":"Shijun Huang, Suyu Zhai, Wenzhong Lai, Kai Chen, Wangchuan Xiao, Jiwei Chen, Jida Bu","doi":"10.1002/kin.21713","DOIUrl":null,"url":null,"abstract":"<p>A novel boron-containing novolac (triphenyl borate-formaldehyde resin, TPBF) was synthesized. The structure, thermoplasticity, molecular weight, and molecular weight distribution of TPBF have been characterized with FT-IR, melt viscosity, <sup>13</sup>C NMR and GPC. The thermal stability of TPBF was investigated by TGA, indicating the thermal stability of TPBF was much better than that of normal novolac (phenol-formaldehyde resin, PF). TPBFs with different molar ratios of formaldehyde to benzene ring in triphenyl borate (TPB) were also synthesized and compared for molecular size, polydispersity and thermal stability. Further, the thermal degradation kinetics of TPBFs and PF were studied by TGA using Madhusdanan-Krishnan-Ninan method and the activation energies were calculated at different degradation stages. It was found that the thermal degradations of TPBFs and PF are a multistage reaction and the degradation reactions in every stage follow the first order reaction mechanism. Finally, the activation energies of thermal degradations of novolac increase with the introduction of boron, the progress of degradation reaction as well as the increase of molar ratios.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21713","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel boron-containing novolac (triphenyl borate-formaldehyde resin, TPBF) was synthesized. The structure, thermoplasticity, molecular weight, and molecular weight distribution of TPBF have been characterized with FT-IR, melt viscosity, 13C NMR and GPC. The thermal stability of TPBF was investigated by TGA, indicating the thermal stability of TPBF was much better than that of normal novolac (phenol-formaldehyde resin, PF). TPBFs with different molar ratios of formaldehyde to benzene ring in triphenyl borate (TPB) were also synthesized and compared for molecular size, polydispersity and thermal stability. Further, the thermal degradation kinetics of TPBFs and PF were studied by TGA using Madhusdanan-Krishnan-Ninan method and the activation energies were calculated at different degradation stages. It was found that the thermal degradations of TPBFs and PF are a multistage reaction and the degradation reactions in every stage follow the first order reaction mechanism. Finally, the activation energies of thermal degradations of novolac increase with the introduction of boron, the progress of degradation reaction as well as the increase of molar ratios.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.