{"title":"Prediction of pulse suitability in rice fallow areas using fuzzy AHP-based machine learning methods in Eastern India","authors":"Satiprasad Sahoo, Chiranjit Singha, Ajit Govind","doi":"10.1007/s10333-024-00970-0","DOIUrl":null,"url":null,"abstract":"<p>In Eastern India, a widespread practice known as “rice fallow pulse” (RFP) involves using the soil’s remaining moisture to grow a short-duration pulse crop. For rainfed systems, it is an excellent practice of climate adaptation. To help farmers make informed decisions about where to plant what and to help policymakers create favorable conditions for timely seed distribution, it is imperative to forecast the appropriateness of pulse crops both geographically and temporally. Using fuzzy AHP (FAHP)-based machine learning methods, we tried to detect pulse appropriateness both geographically and temporally while considering fifteen natural, climatic, environment, and soil health-related characteristics in the Western Lateritic Zone of the Indian State of West Bengal. According to the findings, all machine learning (ML) techniques identified high-suitability zones in the districts of Murshidabad, Birbhum, Paschim Bardhaman, Paschim Medinipur, and Jhargram. By using machine learning techniques such as shrinkage discriminant analysis (SDA), neural network (nnet), random forest (RF), Naive Bayes (NB), rule-based C5.0, genetic algorithm (GA), and particle swarm optimization (PSO), it was found that moderate suitability zones were visible in some areas of Murshidabad, Birbhum, Paschim Bardhaman, Paschim Medinipur, and Purulia. Additionally, it was noted that all ML approaches revealed maximum low suitability zones in certain areas of Birbhum, Bankura, Purba Bardhaman, Purulia, and Murshidabad. Finally, district-level yearly pulse yields of minor, chickpea, and pigeonpea verified the precision of the ML-based models. We have devised a structure to assess pulse suitability analysis to improve crop and land productivity. One of the world’s most populous regions can use the data to inform policy decisions that will improve food and nutritional security in the face of shifting economic and environmental conditions.</p>","PeriodicalId":56101,"journal":{"name":"Paddy and Water Environment","volume":"37 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paddy and Water Environment","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10333-024-00970-0","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In Eastern India, a widespread practice known as “rice fallow pulse” (RFP) involves using the soil’s remaining moisture to grow a short-duration pulse crop. For rainfed systems, it is an excellent practice of climate adaptation. To help farmers make informed decisions about where to plant what and to help policymakers create favorable conditions for timely seed distribution, it is imperative to forecast the appropriateness of pulse crops both geographically and temporally. Using fuzzy AHP (FAHP)-based machine learning methods, we tried to detect pulse appropriateness both geographically and temporally while considering fifteen natural, climatic, environment, and soil health-related characteristics in the Western Lateritic Zone of the Indian State of West Bengal. According to the findings, all machine learning (ML) techniques identified high-suitability zones in the districts of Murshidabad, Birbhum, Paschim Bardhaman, Paschim Medinipur, and Jhargram. By using machine learning techniques such as shrinkage discriminant analysis (SDA), neural network (nnet), random forest (RF), Naive Bayes (NB), rule-based C5.0, genetic algorithm (GA), and particle swarm optimization (PSO), it was found that moderate suitability zones were visible in some areas of Murshidabad, Birbhum, Paschim Bardhaman, Paschim Medinipur, and Purulia. Additionally, it was noted that all ML approaches revealed maximum low suitability zones in certain areas of Birbhum, Bankura, Purba Bardhaman, Purulia, and Murshidabad. Finally, district-level yearly pulse yields of minor, chickpea, and pigeonpea verified the precision of the ML-based models. We have devised a structure to assess pulse suitability analysis to improve crop and land productivity. One of the world’s most populous regions can use the data to inform policy decisions that will improve food and nutritional security in the face of shifting economic and environmental conditions.
期刊介绍:
The aim of Paddy and Water Environment is to advance the science and technology of water and environment related disciplines in paddy-farming. The scope includes the paddy-farming related scientific and technological aspects in agricultural engineering such as irrigation and drainage, soil and water conservation, land and water resources management, irrigation facilities and disaster management, paddy multi-functionality, agricultural policy, regional planning, bioenvironmental systems, and ecological conservation and restoration in paddy farming regions.