{"title":"A Study on the Anti-inflammatory Activity of Clematis tangutica Using Molecular Networking","authors":"Aijing Li, Tao Chen, Shuo Wang, Juyuan Luo, Cheng Shen, Hongmei Li, Yumei Ma, Zhibo Song, Weihang Lu, Denglang Zou, Yulin Li","doi":"10.2174/0115734110289479240220061031","DOIUrl":null,"url":null,"abstract":"Background:: Clematis tangutica, an indigenous medicinal herb native to the Qinghai- Tibet Plateau of China, has traditionally been associated with treating various inflammation-related diseases. While its therapeutic potential is recognized, a comprehensive characterization of its metabolite molecules and their anti-inflammatory properties has not been undertaken. Objective:: This study aimed to comprehensively profile the metabolite molecules of Clematis tangutica and identify potential anti-inflammatory active molecules using the Activity Labelled Molecular Networking (ALMN) approach. Methods:: The ALMN approach was employed to visually label activity to the feature-based molecular network, allowing for the profiling of potential anti-inflammatory active molecules in Clematis tangutica. Through correlating activity levels with the respective molecules, a detailed profiling was achieved. Results:: Out of the 8,644 metabolite molecules in Clematis tangutica, ten were identified as the most potent anti-inflammatory molecules. Among these, Spiraeoside was notably annotated along with its structure. Conclusion:: This research successfully identified ten potent anti-inflammatory molecules from the vast metabolite profile of Clematis tangutica, including a detailed annotation of Spiraeoside. This marked a significant step in bridging traditional therapeutic knowledge with modern molecular profiling techniques.","PeriodicalId":10742,"journal":{"name":"Current Analytical Chemistry","volume":"32 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110289479240220061031","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background:: Clematis tangutica, an indigenous medicinal herb native to the Qinghai- Tibet Plateau of China, has traditionally been associated with treating various inflammation-related diseases. While its therapeutic potential is recognized, a comprehensive characterization of its metabolite molecules and their anti-inflammatory properties has not been undertaken. Objective:: This study aimed to comprehensively profile the metabolite molecules of Clematis tangutica and identify potential anti-inflammatory active molecules using the Activity Labelled Molecular Networking (ALMN) approach. Methods:: The ALMN approach was employed to visually label activity to the feature-based molecular network, allowing for the profiling of potential anti-inflammatory active molecules in Clematis tangutica. Through correlating activity levels with the respective molecules, a detailed profiling was achieved. Results:: Out of the 8,644 metabolite molecules in Clematis tangutica, ten were identified as the most potent anti-inflammatory molecules. Among these, Spiraeoside was notably annotated along with its structure. Conclusion:: This research successfully identified ten potent anti-inflammatory molecules from the vast metabolite profile of Clematis tangutica, including a detailed annotation of Spiraeoside. This marked a significant step in bridging traditional therapeutic knowledge with modern molecular profiling techniques.
期刊介绍:
Current Analytical Chemistry publishes full-length/mini reviews and original research articles on the most recent advances in analytical chemistry. All aspects of the field are represented, including analytical methodology, techniques, and instrumentation in both fundamental and applied research topics of interest to the broad readership of the journal. Current Analytical Chemistry strives to serve as an authoritative source of information in analytical chemistry and in related applications such as biochemical analysis, pharmaceutical research, quantitative biological imaging, novel sensors, and nanotechnology.