A Study on the Anti-inflammatory Activity of Clematis tangutica Using Molecular Networking

IF 1.7 4区 化学 Q3 CHEMISTRY, ANALYTICAL Current Analytical Chemistry Pub Date : 2024-03-08 DOI:10.2174/0115734110289479240220061031
Aijing Li, Tao Chen, Shuo Wang, Juyuan Luo, Cheng Shen, Hongmei Li, Yumei Ma, Zhibo Song, Weihang Lu, Denglang Zou, Yulin Li
{"title":"A Study on the Anti-inflammatory Activity of Clematis tangutica Using Molecular Networking","authors":"Aijing Li, Tao Chen, Shuo Wang, Juyuan Luo, Cheng Shen, Hongmei Li, Yumei Ma, Zhibo Song, Weihang Lu, Denglang Zou, Yulin Li","doi":"10.2174/0115734110289479240220061031","DOIUrl":null,"url":null,"abstract":"Background:: Clematis tangutica, an indigenous medicinal herb native to the Qinghai- Tibet Plateau of China, has traditionally been associated with treating various inflammation-related diseases. While its therapeutic potential is recognized, a comprehensive characterization of its metabolite molecules and their anti-inflammatory properties has not been undertaken. Objective:: This study aimed to comprehensively profile the metabolite molecules of Clematis tangutica and identify potential anti-inflammatory active molecules using the Activity Labelled Molecular Networking (ALMN) approach. Methods:: The ALMN approach was employed to visually label activity to the feature-based molecular network, allowing for the profiling of potential anti-inflammatory active molecules in Clematis tangutica. Through correlating activity levels with the respective molecules, a detailed profiling was achieved. Results:: Out of the 8,644 metabolite molecules in Clematis tangutica, ten were identified as the most potent anti-inflammatory molecules. Among these, Spiraeoside was notably annotated along with its structure. Conclusion:: This research successfully identified ten potent anti-inflammatory molecules from the vast metabolite profile of Clematis tangutica, including a detailed annotation of Spiraeoside. This marked a significant step in bridging traditional therapeutic knowledge with modern molecular profiling techniques.","PeriodicalId":10742,"journal":{"name":"Current Analytical Chemistry","volume":"32 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110289479240220061031","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background:: Clematis tangutica, an indigenous medicinal herb native to the Qinghai- Tibet Plateau of China, has traditionally been associated with treating various inflammation-related diseases. While its therapeutic potential is recognized, a comprehensive characterization of its metabolite molecules and their anti-inflammatory properties has not been undertaken. Objective:: This study aimed to comprehensively profile the metabolite molecules of Clematis tangutica and identify potential anti-inflammatory active molecules using the Activity Labelled Molecular Networking (ALMN) approach. Methods:: The ALMN approach was employed to visually label activity to the feature-based molecular network, allowing for the profiling of potential anti-inflammatory active molecules in Clematis tangutica. Through correlating activity levels with the respective molecules, a detailed profiling was achieved. Results:: Out of the 8,644 metabolite molecules in Clematis tangutica, ten were identified as the most potent anti-inflammatory molecules. Among these, Spiraeoside was notably annotated along with its structure. Conclusion:: This research successfully identified ten potent anti-inflammatory molecules from the vast metabolite profile of Clematis tangutica, including a detailed annotation of Spiraeoside. This marked a significant step in bridging traditional therapeutic knowledge with modern molecular profiling techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用分子网络研究唐铁线莲的抗炎活性
背景唐铁线莲(Clematis tangutica)是一种原产于中国青藏高原的本土药材,传统上用于治疗各种炎症相关疾病。虽然其治疗潜力已得到认可,但对其代谢物分子及其抗炎特性的全面描述尚未开展。研究目的本研究旨在利用活性标记分子网络(ALMN)方法,全面分析唐铁线莲的代谢物分子,并确定潜在的抗炎活性分子。研究方法采用ALMN方法将活性直观地标记到基于特征的分子网络中,从而分析出虎杖中潜在的抗炎活性分子。通过将活性水平与相应的分子关联起来,实现了详细的剖析。研究结果在唐铁线莲的 8,644 个代谢物分子中,有 10 个被鉴定为最有效的抗炎分子。其中,Spiraeoside 的结构得到了显著的注释。结论这项研究成功地从唐铁线莲的大量代谢物中鉴定出十种强效抗炎分子,包括对 Spiraeoside 的详细注释。这标志着在将传统治疗知识与现代分子剖析技术相结合方面迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Analytical Chemistry
Current Analytical Chemistry 化学-分析化学
CiteScore
4.10
自引率
0.00%
发文量
90
审稿时长
9 months
期刊介绍: Current Analytical Chemistry publishes full-length/mini reviews and original research articles on the most recent advances in analytical chemistry. All aspects of the field are represented, including analytical methodology, techniques, and instrumentation in both fundamental and applied research topics of interest to the broad readership of the journal. Current Analytical Chemistry strives to serve as an authoritative source of information in analytical chemistry and in related applications such as biochemical analysis, pharmaceutical research, quantitative biological imaging, novel sensors, and nanotechnology.
期刊最新文献
Purification and Kinetics of Chlorogenic Acid from Eucommia ulmoides Oliver Leaves by Macroporous Resins Combined with First-Principles Calculation Research Progress in Starch-based Dye Adsorbents Electrochemical Behavior of an Anti-cancer Drug Erlotinib at Screen-Printed Electrode and its Analytical Application Polygonum hydropiper Leaves have More Medicinal Value than Stems: Based on Chemical Composition and Antioxidant Activity In silico Investigation and Molecular Docking Studies of Pyrazole Incorporated Thiadiazole Derivatives for Antimicrobial Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1