Panna Tímea Fekete, Roland Molontay, Balázs Ráth, Kitti Varga
{"title":"Color-avoiding percolation and branching processes","authors":"Panna Tímea Fekete, Roland Molontay, Balázs Ráth, Kitti Varga","doi":"10.1017/jpr.2023.115","DOIUrl":null,"url":null,"abstract":"We study a variant of the color-avoiding percolation model introduced by Krause <jats:italic>et al.</jats:italic>, namely we investigate the color-avoiding bond percolation setup on (not necessarily properly) edge-colored Erdős–Rényi random graphs. We say that two vertices are color-avoiding connected in an edge-colored graph if, after the removal of the edges of any color, they are in the same component in the remaining graph. The color-avoiding connected components of an edge-colored graph are maximal sets of vertices such that any two of them are color-avoiding connected. We consider the fraction of vertices contained in color-avoiding connected components of a given size, as well as the fraction of vertices contained in the giant color-avoidin g connected component. It is known that these quantities converge, and the limits can be expressed in terms of probabilities associated to edge-colored branching process trees. We provide explicit formulas for the limit of the fraction of vertices contained in the giant color-avoiding connected component, and we give a simpler asymptotic expression for it in the barely supercritical regime. In addition, in the two-colored case we also provide explicit formulas for the limit of the fraction of vertices contained in color-avoiding connected components of a given size.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"19 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2023.115","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We study a variant of the color-avoiding percolation model introduced by Krause et al., namely we investigate the color-avoiding bond percolation setup on (not necessarily properly) edge-colored Erdős–Rényi random graphs. We say that two vertices are color-avoiding connected in an edge-colored graph if, after the removal of the edges of any color, they are in the same component in the remaining graph. The color-avoiding connected components of an edge-colored graph are maximal sets of vertices such that any two of them are color-avoiding connected. We consider the fraction of vertices contained in color-avoiding connected components of a given size, as well as the fraction of vertices contained in the giant color-avoidin g connected component. It is known that these quantities converge, and the limits can be expressed in terms of probabilities associated to edge-colored branching process trees. We provide explicit formulas for the limit of the fraction of vertices contained in the giant color-avoiding connected component, and we give a simpler asymptotic expression for it in the barely supercritical regime. In addition, in the two-colored case we also provide explicit formulas for the limit of the fraction of vertices contained in color-avoiding connected components of a given size.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.