Mandy Sander, Arne J. Beermann, Dominik Buchner, Iris Madge Pimentel, James S. Sinclair, Martina Weiss, Peter Haase, Florian Leese
{"title":"Environmental DNA time series analysis of a temperate stream reveals distinct seasonal community and functional shifts","authors":"Mandy Sander, Arne J. Beermann, Dominik Buchner, Iris Madge Pimentel, James S. Sinclair, Martina Weiss, Peter Haase, Florian Leese","doi":"10.1002/rra.4265","DOIUrl":null,"url":null,"abstract":"Environmental DNA (eDNA) extracted from water is routinely used in river biodiversity research, and via metabarcoding eDNA can provide comprehensive taxa lists with little effort and cost. However, eDNA-based species detection in streams and rivers may be influenced by sampling season and other key factors such as water temperature and discharge. Research linking these factors and also informing on the potential of eDNA metabarcoding to detect shifts in ecological signatures, such as species phenology and functional feeding groups across seasons, is missing. To address this gap, we collected water samples every 2 weeks for 15 months at a long-term ecological research (LTER) site and at three different positions in the river's cross section, specifically the water surface, riverbed, and riverbank. For these 102 samples, we analyzed macroinvertebrate species and molecular operational taxonomic unit (OTU) richness and temporal community turnover across seasons based on cytochrome c oxidase subunit I (COI) metabarcoding data. Using Generalized Additive Models, we found a significant influence of sampling season on species richness. Community turnover followed a cyclic pattern, reflecting the continuous change of the macroinvertebrate community throughout the year (“seasonal clock”). Although water temperature had no influence on the inferred species richness, higher discharge reduced the number of Annelida and Ephemeroptera species detectable with eDNA. Most macroinvertebrate taxa showed the highest species richness in spring, in particular merolimnic species with univoltine life cycles. Further, we detected an increase in the proportion of shredders in winter and parasites in summer. Our results show the usefulness of highly resolved eDNA metabarcoding time series data for ecological research and biodiversity monitoring in streams and rivers.","PeriodicalId":21513,"journal":{"name":"River Research and Applications","volume":"64 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"River Research and Applications","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rra.4265","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental DNA (eDNA) extracted from water is routinely used in river biodiversity research, and via metabarcoding eDNA can provide comprehensive taxa lists with little effort and cost. However, eDNA-based species detection in streams and rivers may be influenced by sampling season and other key factors such as water temperature and discharge. Research linking these factors and also informing on the potential of eDNA metabarcoding to detect shifts in ecological signatures, such as species phenology and functional feeding groups across seasons, is missing. To address this gap, we collected water samples every 2 weeks for 15 months at a long-term ecological research (LTER) site and at three different positions in the river's cross section, specifically the water surface, riverbed, and riverbank. For these 102 samples, we analyzed macroinvertebrate species and molecular operational taxonomic unit (OTU) richness and temporal community turnover across seasons based on cytochrome c oxidase subunit I (COI) metabarcoding data. Using Generalized Additive Models, we found a significant influence of sampling season on species richness. Community turnover followed a cyclic pattern, reflecting the continuous change of the macroinvertebrate community throughout the year (“seasonal clock”). Although water temperature had no influence on the inferred species richness, higher discharge reduced the number of Annelida and Ephemeroptera species detectable with eDNA. Most macroinvertebrate taxa showed the highest species richness in spring, in particular merolimnic species with univoltine life cycles. Further, we detected an increase in the proportion of shredders in winter and parasites in summer. Our results show the usefulness of highly resolved eDNA metabarcoding time series data for ecological research and biodiversity monitoring in streams and rivers.
期刊介绍:
River Research and Applications , previously published as Regulated Rivers: Research and Management (1987-2001), is an international journal dedicated to the promotion of basic and applied scientific research on rivers. The journal publishes original scientific and technical papers on biological, ecological, geomorphological, hydrological, engineering and geographical aspects related to rivers in both the developed and developing world. Papers showing how basic studies and new science can be of use in applied problems associated with river management, regulation and restoration are encouraged as is interdisciplinary research concerned directly or indirectly with river management problems.