{"title":"Bearing Fault Diagnosis under Varying Work Conditions Based on Synchrosqueezing Transform, Random Projection, and Convolutional Neural Networks","authors":"Boubker Najdi, M. Benbrahim, M. Kabbaj","doi":"10.36001/ijphm.2024.v15i1.3799","DOIUrl":null,"url":null,"abstract":"Bearings are critical components in rotating machinery, and their failure can lead to costly repairs and downtime. To prevent such failures, it is important to detect and diagnose bearing faults early. In recent years, deep-learning techniques have shown promise for detecting and diagnosing bearing faults automatically. While these algorithms can all achieve diagnostic accuracy of over 90%, their generalizability and robustness in complex, extreme variable loading conditions have not been thoroughly validated. In this paper, a feature extraction method based on Synchro-squeezing Wavelet Transform (SSWT), Random projection (RP), and deep learning (DL) is presented. To fulfill the data requirements of neural networks, data augmentation is initially utilized to augment the size of the original data. Subsequently, the SSWT technique is employed to convert the signals from the Time domain to the Time-Frequency domain, resulting in the conversion of the 1-D signal to a 2-D feature image. To decrease the complexity of deep learning computation, data preprocessing involves utilizing Random projection to reduce feature dimensionality. The final step involves constructing a Convolutional Neural Network (CNN) model that can identify fault features from the obtained Time-Frequency images and perform accurate fault classification. By utilizing the CWRU and IMS datasets to evaluate the method, the study demonstrates that the suggested approach outperforms advanced techniques in terms of both diagnostic accuracy and robustness.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2024.v15i1.3799","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bearings are critical components in rotating machinery, and their failure can lead to costly repairs and downtime. To prevent such failures, it is important to detect and diagnose bearing faults early. In recent years, deep-learning techniques have shown promise for detecting and diagnosing bearing faults automatically. While these algorithms can all achieve diagnostic accuracy of over 90%, their generalizability and robustness in complex, extreme variable loading conditions have not been thoroughly validated. In this paper, a feature extraction method based on Synchro-squeezing Wavelet Transform (SSWT), Random projection (RP), and deep learning (DL) is presented. To fulfill the data requirements of neural networks, data augmentation is initially utilized to augment the size of the original data. Subsequently, the SSWT technique is employed to convert the signals from the Time domain to the Time-Frequency domain, resulting in the conversion of the 1-D signal to a 2-D feature image. To decrease the complexity of deep learning computation, data preprocessing involves utilizing Random projection to reduce feature dimensionality. The final step involves constructing a Convolutional Neural Network (CNN) model that can identify fault features from the obtained Time-Frequency images and perform accurate fault classification. By utilizing the CWRU and IMS datasets to evaluate the method, the study demonstrates that the suggested approach outperforms advanced techniques in terms of both diagnostic accuracy and robustness.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.