Surface modification of ZrC dispersion-strengthened W under low energy He plasma irradiation

Long Li, Zhe Liu, Ze Chen, Chao Yin, S. Mao, X. B. Wu, Noriyasu Ohno, Minyou Ye
{"title":"Surface modification of ZrC dispersion-strengthened W under low energy He plasma irradiation","authors":"Long Li, Zhe Liu, Ze Chen, Chao Yin, S. Mao, X. B. Wu, Noriyasu Ohno, Minyou Ye","doi":"10.1088/1741-4326/ad2f4c","DOIUrl":null,"url":null,"abstract":"\n ZrC dispersion-strengthened W exhibits high strength/ductility, low ductile-to-brittle transition temperature, and excellent thermal shock resistance, making it a promising candidate plasma-facing material for future fusion devices. In this study, surface modification of 0.5 wt.% ZrC dispersion-strengthened W (WZrC) under low energy and high fluence He plasma irradiation at high temperature was presented. Under the energy of 90 eV and fluence ranging from 6 × 1024 He∙m-2 to 2 × 1026 He∙m-2 He irradiation at 920 ℃, typical fuzz nanostructure appeared on the W matrix of WZrC. The fuzz showed comparable thickness and structure features to pure W, which indicates limited effects of the particle’s addition on resistance to high fluence He irradiation at high temperatures. Besides, the erosion behavior of particles under He plasma irradiation has been investigated, which is thought to be dominated by a sputtering process. Under the He influence of 6 × 1024 He∙m-2, only nanopores were observed in the surface region. With fluence increasing to 5 × 1025 He∙m-2, the surface became relatively uneven with larger holes and stalagmitic structures. And W accumulated on the top of stalagmitic structures due to the subthreshold sputtering under He irradiation. When fluence further increased to 2 × 1026 He∙m-2, the particles were eroded completely and covered by the extended fuzz, forming cavities. In addition, distinctive layered nanotendrils were observed above the cavities, which were characterized to be consist of inner W-riched skeletons and outer Zr-riched layers. It indicates that the layered nanotendrils should be the result of fuzz extension combined with particles sputtering and redeposition.","PeriodicalId":503481,"journal":{"name":"Nuclear Fusion","volume":"46 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad2f4c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ZrC dispersion-strengthened W exhibits high strength/ductility, low ductile-to-brittle transition temperature, and excellent thermal shock resistance, making it a promising candidate plasma-facing material for future fusion devices. In this study, surface modification of 0.5 wt.% ZrC dispersion-strengthened W (WZrC) under low energy and high fluence He plasma irradiation at high temperature was presented. Under the energy of 90 eV and fluence ranging from 6 × 1024 He∙m-2 to 2 × 1026 He∙m-2 He irradiation at 920 ℃, typical fuzz nanostructure appeared on the W matrix of WZrC. The fuzz showed comparable thickness and structure features to pure W, which indicates limited effects of the particle’s addition on resistance to high fluence He irradiation at high temperatures. Besides, the erosion behavior of particles under He plasma irradiation has been investigated, which is thought to be dominated by a sputtering process. Under the He influence of 6 × 1024 He∙m-2, only nanopores were observed in the surface region. With fluence increasing to 5 × 1025 He∙m-2, the surface became relatively uneven with larger holes and stalagmitic structures. And W accumulated on the top of stalagmitic structures due to the subthreshold sputtering under He irradiation. When fluence further increased to 2 × 1026 He∙m-2, the particles were eroded completely and covered by the extended fuzz, forming cavities. In addition, distinctive layered nanotendrils were observed above the cavities, which were characterized to be consist of inner W-riched skeletons and outer Zr-riched layers. It indicates that the layered nanotendrils should be the result of fuzz extension combined with particles sputtering and redeposition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低能 He 等离子辐照下 ZrC 分散强化 W 的表面改性
ZrC 分散强化 W 具有高强度/韧性、低韧性-脆性转变温度和优异的抗热震性,因此有望成为未来聚变装置的候选等离子体面材料。本研究介绍了 0.5 wt.% ZrC 分散强化 W(WZrC)在低能量、高通量 He 等离子体高温辐照下的表面改性情况。在 90 eV 的能量和 6 × 1024 He∙m-2 到 2 × 1026 He∙m-2 的通量范围内,在 920 ℃ 的等离子体辐照下,WZrC 的 W 基体上出现了典型的模糊纳米结构。毛细管的厚度和结构特征与纯 W 相当,这表明颗粒的添加对高温下抵抗高通量 He 辐照的影响有限。此外,还研究了粒子在 He 等离子体辐照下的侵蚀行为。在 6 × 1024 He∙m-2 的 He 影响下,仅在表面区域观察到纳米孔。当通量增加到 5 × 1025 He∙m-2 时,表面变得相对不平整,出现了较大的孔洞和星状结构。由于阈下溅射是在 He 的辐照下进行的,因此 W 会积聚在星状结构的顶部。当通量进一步增加到 2 × 1026 He∙m-2 时,颗粒被完全侵蚀,并被扩展的绒毛覆盖,形成空穴。此外,在空穴上方还观察到了明显的分层纳米卷须,其特征是由内部的 W-riched 骨架和外部的 Zr-riched 层组成。这表明分层纳米卷须应该是模糊延伸与颗粒溅射和再沉积相结合的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupling beam power and beam energy on ASDEX Upgrade NBI with an in-situ variable extraction gap system Dynamic control of divertor heat flux during n = 4 RMP ELM suppression by small variation of q95 in EAST Recent progress in improvement in ion cyclotron range of frequencies coupling and power absorption with new antennas of Experimental Advanced Superconducting Tokamak (EAST) Resistive wall mode and fishbone mode in ITER steady state scenario: roles of fusion-born alphas and plasma flow First SOLPS-ITER predictions of the impact of cross-field drifts on divertor and scrape-off layer conditions in double-null configuration of STEP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1