Leigh J. Whittinghill, Christine Jackson, Pradip Poudel
{"title":"The Effects of Annual Compost Addition to Agricultural Green Roofs on Runoff Water Quality","authors":"Leigh J. Whittinghill, Christine Jackson, Pradip Poudel","doi":"10.21273/hortsci17556-23","DOIUrl":null,"url":null,"abstract":"Space availability is one of the largest barriers to urban agriculture. One way around this issue that urban farmers in some parts of the world are exploring is moving their farming activities to building rooftops. One method of rooftop farming in use is row agriculture using green roof technology. Vegetable crop plants, which typically require more water and more nutrients than the ornamental species found on green roofs, require irrigation and the use of fertilizers. One nutrient management practice that some rooftop farmers are using is the addition of compost, which could lead to changes over time in the water-holding capacity, organic matter content, and weight of green roof media. This practice and its long-term implications have not been well-studied. Green roof platforms were created to examine how the annual additions of compost in quantities of 0, 0.33, 0.66, and 1 kg/m2 affect runoff water quality and green roof media properties. Runoff water samples were collected and analyzed for pH, conductivity, color, turbidity, and nitrate nitrogen, ammonia nitrogen, total phosphorus, and potassium contents. Compost treatment had no effect on any water quality metric except for color, which had slightly different changes over time in the different compost treatments. The lack of difference among the treatments may be attributed to the low nutrient content of the compost and continued use of fertilizers to provide nutrients. Most samples observed in this study exceeded the US Environmental Protection Agency water quality guidelines for nitrate nitrogen and phosphorus and were similar to values observed in the green roof literature regarding agricultural and ornamental green roofs. This has potential implications for surface water quality and eutrophication, especially as green roof agriculture increases.","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hortscience","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/hortsci17556-23","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Space availability is one of the largest barriers to urban agriculture. One way around this issue that urban farmers in some parts of the world are exploring is moving their farming activities to building rooftops. One method of rooftop farming in use is row agriculture using green roof technology. Vegetable crop plants, which typically require more water and more nutrients than the ornamental species found on green roofs, require irrigation and the use of fertilizers. One nutrient management practice that some rooftop farmers are using is the addition of compost, which could lead to changes over time in the water-holding capacity, organic matter content, and weight of green roof media. This practice and its long-term implications have not been well-studied. Green roof platforms were created to examine how the annual additions of compost in quantities of 0, 0.33, 0.66, and 1 kg/m2 affect runoff water quality and green roof media properties. Runoff water samples were collected and analyzed for pH, conductivity, color, turbidity, and nitrate nitrogen, ammonia nitrogen, total phosphorus, and potassium contents. Compost treatment had no effect on any water quality metric except for color, which had slightly different changes over time in the different compost treatments. The lack of difference among the treatments may be attributed to the low nutrient content of the compost and continued use of fertilizers to provide nutrients. Most samples observed in this study exceeded the US Environmental Protection Agency water quality guidelines for nitrate nitrogen and phosphorus and were similar to values observed in the green roof literature regarding agricultural and ornamental green roofs. This has potential implications for surface water quality and eutrophication, especially as green roof agriculture increases.
期刊介绍:
HortScience publishes horticultural information of interest to a broad array of horticulturists. Its goals are to apprise horticultural scientists and others interested in horticulture of scientific and industry developments and of significant research, education, or extension findings or methods.