A Keyframe Extraction Approach for 3D Videogrammetry Based on Baseline Constraints

Xinyi Liu, Qingwu Hu, Xianfeng Huang
{"title":"A Keyframe Extraction Approach for 3D Videogrammetry Based on Baseline Constraints","authors":"Xinyi Liu, Qingwu Hu, Xianfeng Huang","doi":"10.14358/pers.23-00049r2","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel approach for the extraction of high-quality frames to enhance the fidelity of videogrammetry by combining fuzzy frames removal and baseline constraints. We first implement a gradient-based mutual information method to filter out low-quality frames while\n preserving the integrity of the videos. After frame pose estimation, the geometric properties of the baseline are constrained by three aspects to extract the keyframes: quality of relative orientation, baseline direction, and base to distance ratio. The three-dimensional model is then reconstructed\n based on these extracted keyframes. Experimental results demonstrate that our approach maintains a strong robustness throughout the aerial triangulation, leading to high levels of reconstruction precision across diverse video scenarios. Compared to other methods, this paper improves the reconstruction\n accuracy by more than 0.2 mm while simultaneously maintaining the completeness.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"37 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00049r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel approach for the extraction of high-quality frames to enhance the fidelity of videogrammetry by combining fuzzy frames removal and baseline constraints. We first implement a gradient-based mutual information method to filter out low-quality frames while preserving the integrity of the videos. After frame pose estimation, the geometric properties of the baseline are constrained by three aspects to extract the keyframes: quality of relative orientation, baseline direction, and base to distance ratio. The three-dimensional model is then reconstructed based on these extracted keyframes. Experimental results demonstrate that our approach maintains a strong robustness throughout the aerial triangulation, leading to high levels of reconstruction precision across diverse video scenarios. Compared to other methods, this paper improves the reconstruction accuracy by more than 0.2 mm while simultaneously maintaining the completeness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于基线约束的 3D 视频测量关键帧提取方法
在本文中,我们提出了一种提取高质量帧的新方法,通过结合模糊帧去除和基线约束来提高视频测量的保真度。我们首先采用基于梯度的互信息方法来过滤低质量帧,同时保持视频的完整性。在帧姿态估计之后,基线的几何属性受到三个方面的约束,以提取关键帧:相对方向的质量、基线方向和基距比。然后根据这些提取的关键帧重建三维模型。实验结果表明,我们的方法在整个空中三角测量过程中保持了很强的鲁棒性,从而在不同的视频场景中实现了很高的重建精度。与其他方法相比,本文在保持完整性的同时,将重建精度提高了 0.2 毫米以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion Book Review ‐ Top 20 Essential Skills for ArcGIS Pro A Surface Water Extraction Method Integrating Spectral and Temporal Characteristics Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope GIS Tips & Tricks ‐ USGS Adds 100K Topo Scale to OnDemand Map Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1