Extraction of Terraces in Hilly Areas from Remote Sensing Images Using DEM and Improved U-Net

Fengcan Peng, Qiuzhi Peng, Di Chen, Jiating Lu, Yufei Song
{"title":"Extraction of Terraces in Hilly Areas from Remote Sensing Images Using DEM and Improved U-Net","authors":"Fengcan Peng, Qiuzhi Peng, Di Chen, Jiating Lu, Yufei Song","doi":"10.14358/pers.23-00069r2","DOIUrl":null,"url":null,"abstract":"To extract terraced fields in hilly areas on a large scale in an automated and high-precision manner, this paper proposes a terrace extraction method that combines the Digital Elevation Model (DEM), Sentinel-2 imagery, and the improved U-Net semantic segmentation model. The U-Net model\n is modified by introducing Attention Gate modules into its decoding modules to suppress the interference of redundant features and adding Dropout and Batch Normalization layers to improve training speed, robustness, and fitting ability. In addition, the DEM band is combined with the red, green,\n and blue bands of the remote sensing images to make full use of terrain information. The experimental results show that the Precision, Recall, F1 score, and Mean Intersection over Union of the proposed method for terrace extraction are improved to other mainstream advanced methods, and the\n internal information of the terraces extracted is more complete, with fewer false positive and false negative results.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"124 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00069r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To extract terraced fields in hilly areas on a large scale in an automated and high-precision manner, this paper proposes a terrace extraction method that combines the Digital Elevation Model (DEM), Sentinel-2 imagery, and the improved U-Net semantic segmentation model. The U-Net model is modified by introducing Attention Gate modules into its decoding modules to suppress the interference of redundant features and adding Dropout and Batch Normalization layers to improve training speed, robustness, and fitting ability. In addition, the DEM band is combined with the red, green, and blue bands of the remote sensing images to make full use of terrain information. The experimental results show that the Precision, Recall, F1 score, and Mean Intersection over Union of the proposed method for terrace extraction are improved to other mainstream advanced methods, and the internal information of the terraces extracted is more complete, with fewer false positive and false negative results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 DEM 和改进的 U-Net 从遥感图像中提取丘陵地区的梯田
为了自动、高精度地大规模提取丘陵地区的梯田,本文提出了一种结合数字高程模型(DEM)、哨兵-2 图像和改进的 U-Net 语义分割模型的梯田提取方法。本文对 U-Net 模型进行了改进,在其解码模块中引入注意门模块以抑制冗余特征的干扰,并增加了 Dropout 层和批量归一化层以提高训练速度、鲁棒性和拟合能力。此外,还将 DEM 波段与遥感图像的红绿蓝波段相结合,以充分利用地形信息。实验结果表明,所提出的梯田提取方法的精度、召回率、F1 分数和平均交叉比 Union 均优于其他主流先进方法,提取的梯田内部信息更加完整,假阳性和假阴性结果更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion Book Review ‐ Top 20 Essential Skills for ArcGIS Pro A Surface Water Extraction Method Integrating Spectral and Temporal Characteristics Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope GIS Tips & Tricks ‐ USGS Adds 100K Topo Scale to OnDemand Map Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1