Telugu letters dataset and parallel deep convolutional neural network with a SGD optimizer model for TCR

Josyula Siva Phaniram, Mukkamalla Babu Reddy
{"title":"Telugu letters dataset and parallel deep convolutional neural network with a SGD optimizer model for TCR","authors":"Josyula Siva Phaniram, Mukkamalla Babu Reddy","doi":"10.11591/ijres.v13.i1.pp217-226","DOIUrl":null,"url":null,"abstract":"Because of the rapid growth in technology breakthroughs, including multimedia and cell phones, Telugu character recognition (TCR) has recently become a popular study area. It is still necessary to construct automated and intelligent online TCR models, even if many studies have focused on offline TCR models. The Telugu character dataset construction and validation using an Inception and ResNet-based model are presented. The collection of 645 letters in the dataset includes 18 Achus, 38 Hallus, 35 Othulu, 34×16 Guninthamulu, and 10 Ankelu. The proposed technique aims to efficiently recognize and identify distinctive Telugu characters online. This model's main pre-processing steps to achieve its goals include normalization, smoothing, and interpolation. Improved recognition performance can be attained by using stochastic gradient descent (SGD) to optimize the model's hyperparameters.","PeriodicalId":158991,"journal":{"name":"International Journal of Reconfigurable and Embedded Systems (IJRES)","volume":"109 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reconfigurable and Embedded Systems (IJRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijres.v13.i1.pp217-226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Because of the rapid growth in technology breakthroughs, including multimedia and cell phones, Telugu character recognition (TCR) has recently become a popular study area. It is still necessary to construct automated and intelligent online TCR models, even if many studies have focused on offline TCR models. The Telugu character dataset construction and validation using an Inception and ResNet-based model are presented. The collection of 645 letters in the dataset includes 18 Achus, 38 Hallus, 35 Othulu, 34×16 Guninthamulu, and 10 Ankelu. The proposed technique aims to efficiently recognize and identify distinctive Telugu characters online. This model's main pre-processing steps to achieve its goals include normalization, smoothing, and interpolation. Improved recognition performance can be attained by using stochastic gradient descent (SGD) to optimize the model's hyperparameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
泰卢固语字母数据集和并行深度卷积神经网络与 TCR 的 SGD 优化模型
由于多媒体和手机等技术的飞速发展,泰卢固语字符识别(TCR)最近成为一个热门研究领域。尽管许多研究都集中在离线泰卢固语字符识别模型上,但仍有必要构建自动化和智能化的在线泰卢固语字符识别模型。本文介绍了使用基于 Inception 和 ResNet 的模型构建和验证泰卢固语字符数据集的情况。数据集中的 645 个字母包括 18 个 Achus、38 个 Hallus、35 个 Othulu、34×16 个 Guninthamulu 和 10 个 Ankelu。所提出的技术旨在高效地在线识别和辨认独特的泰卢固语字符。该模型实现目标的主要预处理步骤包括归一化、平滑和插值。通过使用随机梯度下降法(SGD)优化模型的超参数,可以提高识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Internet of things based smart photovoltaic panel monitoring system An efficient novel dual deep network architecture for video forgery detection Video saliency detection using modified high efficiency video coding and background modelling A novel compression methodology for medical images using deep learning for high-speed transmission Frequency reconfigurable microstrip patch antenna for multiband applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1