Task level energy and performance assurance workload scheduling model in distributed computing environment

Jagadevi Bakka, Sanjeev C. Lingareddy
{"title":"Task level energy and performance assurance workload scheduling model in distributed computing environment","authors":"Jagadevi Bakka, Sanjeev C. Lingareddy","doi":"10.11591/ijres.v13.i1.pp210-216","DOIUrl":null,"url":null,"abstract":"Scientific workload execution on distributed computing platform such as cloud environment is time intense and expensive. The scientific workload has task dependencies with different service level agreement (SLA) prerequisite at different levels. Existing workload scheduling (WS) design are not efficient in assuring SLA at task level. Alongside, induce higher cost as majority of scheduling mechanisms reduce either time or energy. In reducing, cost both energy and makespan must be optimized together for allocating resource. No prior work has considered optimizing energy and processing time together in meeting task level SLA requirement. This paper present task level energy and performance assurance (TLEPA)-WS algorithm for distributed computing environment. The TLEPA-WS guarantees energy minimization with performance requirement of parallel application under distributed computational environment. Experiment results shows significant reduction in using energy and makespan; thereby reduces cost of workload execution in comparison with various standard workload execution models.","PeriodicalId":158991,"journal":{"name":"International Journal of Reconfigurable and Embedded Systems (IJRES)","volume":"115 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reconfigurable and Embedded Systems (IJRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijres.v13.i1.pp210-216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scientific workload execution on distributed computing platform such as cloud environment is time intense and expensive. The scientific workload has task dependencies with different service level agreement (SLA) prerequisite at different levels. Existing workload scheduling (WS) design are not efficient in assuring SLA at task level. Alongside, induce higher cost as majority of scheduling mechanisms reduce either time or energy. In reducing, cost both energy and makespan must be optimized together for allocating resource. No prior work has considered optimizing energy and processing time together in meeting task level SLA requirement. This paper present task level energy and performance assurance (TLEPA)-WS algorithm for distributed computing environment. The TLEPA-WS guarantees energy minimization with performance requirement of parallel application under distributed computational environment. Experiment results shows significant reduction in using energy and makespan; thereby reduces cost of workload execution in comparison with various standard workload execution models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式计算环境中任务级能源和性能保证工作量调度模型
在云环境等分布式计算平台上执行科学工作负载既费时又费钱。科学工作负载具有任务依赖性,在不同级别上有不同的服务水平协议(SLA)前提条件。现有的工作负载调度(WS)设计在确保任务级 SLA 方面效率不高。同时,由于大多数调度机制要么减少时间,要么减少能量,因此成本较高。为了降低成本,必须同时优化能量和时间跨度,以分配资源。在满足任务级 SLA 要求的过程中,还没有任何工作考虑过同时优化能量和处理时间。本文提出了适用于分布式计算环境的任务级能源和性能保证(TLEPA)-WS 算法。TLEPA-WS 保证了在分布式计算环境下并行应用程序的性能要求与能源最小化。实验结果表明,与各种标准工作负载执行模型相比,TLEPA-WS 能显著降低能耗和时间跨度,从而降低工作负载的执行成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Internet of things based smart photovoltaic panel monitoring system An efficient novel dual deep network architecture for video forgery detection Video saliency detection using modified high efficiency video coding and background modelling A novel compression methodology for medical images using deep learning for high-speed transmission Frequency reconfigurable microstrip patch antenna for multiband applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1