Viet Cao, Phuong Anh Cao, Duy Linh Han, Minh Tuan Ngo, Truong Xuan Vuong, Hung Nguyen Manh
{"title":"The Suitability of Fe3O4/Graphene Oxide Nanocomposite for Adsorptive Removal of Methylene Blue and Congo Red","authors":"Viet Cao, Phuong Anh Cao, Duy Linh Han, Minh Tuan Ngo, Truong Xuan Vuong, Hung Nguyen Manh","doi":"10.46488/nept.2024.v23i01.021","DOIUrl":null,"url":null,"abstract":"In this study, Fe3O4/GO nanocomposite was synthesized by hydrothermal method and tested for its efficiency in removing methylene blue (MB) and congo red (CR) from water. The synthesized nanocomposite was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The optimal values for MB and CR removal were determined to be pH 6.0, an adsorbent weight of 50.0 mg, and a contact time of 10 min. The adsorption isotherms of the contaminants on the nanocomposite were analyzed using the Freundlich model, indicating a heterogeneous distribution of active sites on the adsorbent surface. The highest adsorption capacity of MB and CR is 135.1 and 285.7 mg.g-1, respectively. Moreover, Fe3O4/GO nanocomposite recycled five cycles with proper adsorption capacity. Overall, the Fe3O4/GO nanocomposite holds great promise for efficient and sustainable water treatment, providing safe and clean water globally.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"122 41","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Environment and Pollution Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46488/nept.2024.v23i01.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, Fe3O4/GO nanocomposite was synthesized by hydrothermal method and tested for its efficiency in removing methylene blue (MB) and congo red (CR) from water. The synthesized nanocomposite was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The optimal values for MB and CR removal were determined to be pH 6.0, an adsorbent weight of 50.0 mg, and a contact time of 10 min. The adsorption isotherms of the contaminants on the nanocomposite were analyzed using the Freundlich model, indicating a heterogeneous distribution of active sites on the adsorbent surface. The highest adsorption capacity of MB and CR is 135.1 and 285.7 mg.g-1, respectively. Moreover, Fe3O4/GO nanocomposite recycled five cycles with proper adsorption capacity. Overall, the Fe3O4/GO nanocomposite holds great promise for efficient and sustainable water treatment, providing safe and clean water globally.
期刊介绍:
The journal was established initially by the name of Journal of Environment and Pollution in 1994, whose name was later changed to Nature Environment and Pollution Technology in the year 2002. It has now become an open access online journal from the year 2017 with ISSN: 2395-3454 (Online). The journal was established especially to promote the cause for environment and to cater the need for rapid dissemination of the vast scientific and technological data generated in this field. It is a part of many reputed international indexing and abstracting agencies. The Journal has evoked a highly encouraging response among the researchers, scientists and technocrats. It has a reputed International Editorial Board and publishes peer reviewed papers. The Journal has also been approved by UGC (India). The journal publishes both original research and review papers. The ideology and scope of the Journal includes the following. -Monitoring, control and management of air, water, soil and noise pollution -Solid waste management -Industrial hygiene and occupational health -Biomedical aspects of pollution -Toxicological studies -Radioactive pollution and radiation effects -Wastewater treatment and recycling etc. -Environmental modelling -Biodiversity and conservation -Dynamics and behaviour of chemicals in environment -Natural resources, wildlife, forests and wetlands etc. -Environmental laws and legal aspects -Environmental economics -Any other topic related to environment