Scan Angle Analysis of Airborne Lidar Data for Missing Return Approximation in Urban Areas

Hamid Gharibi, Ayman Habib
{"title":"Scan Angle Analysis of Airborne Lidar Data for Missing Return Approximation in Urban Areas","authors":"Hamid Gharibi, Ayman Habib","doi":"10.14358/pers.23-00018r2","DOIUrl":null,"url":null,"abstract":"The density and uniformity of lidar data play crucial roles in the cor-responding data processing steps. One factor influencing point density and spacing in lidar data is the presence of empty pulses, where no return is detected. Missing returns can occur due to atmospheric absorption,\n specular and diffusive reflection, etc. To address this issue and enhance point density, this paper introduces a novel method for approximating missing returns in airborne lidar data collected over urban areas. This technique focuses on approximating returns for empty pulses that hit spots\n near abrupt slope changes on building and ground surfaces. The proposed methodology is validated through experiments using a lidar data set from downtown Dublin, Ireland. The collected data contained numerous gaps associated with wet surfaces, as well as missing returns on vertical and oblique\n surfaces.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":" 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00018r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The density and uniformity of lidar data play crucial roles in the cor-responding data processing steps. One factor influencing point density and spacing in lidar data is the presence of empty pulses, where no return is detected. Missing returns can occur due to atmospheric absorption, specular and diffusive reflection, etc. To address this issue and enhance point density, this paper introduces a novel method for approximating missing returns in airborne lidar data collected over urban areas. This technique focuses on approximating returns for empty pulses that hit spots near abrupt slope changes on building and ground surfaces. The proposed methodology is validated through experiments using a lidar data set from downtown Dublin, Ireland. The collected data contained numerous gaps associated with wet surfaces, as well as missing returns on vertical and oblique surfaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对机载激光雷达数据进行扫描角度分析,以实现城市地区的缺失回波近似值
激光雷达数据的密度和均匀性在相应的数据处理步骤中起着至关重要的作用。影响激光雷达数据中点密度和间距的一个因素是空脉冲的存在,即检测不到回波。由于大气吸收、镜面反射和漫反射等原因,可能会出现缺少回波的情况。为解决这一问题并提高点密度,本文介绍了一种新方法,用于近似在城市地区采集的机载激光雷达数据中的缺失回波。该技术的重点是近似返回击中建筑物和地表突然坡度变化附近点的空脉冲。通过使用爱尔兰都柏林市中心的激光雷达数据集进行实验,对所提出的方法进行了验证。收集到的数据包含大量与潮湿表面相关的间隙,以及垂直和倾斜表面的缺失回波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion Book Review ‐ Top 20 Essential Skills for ArcGIS Pro A Surface Water Extraction Method Integrating Spectral and Temporal Characteristics Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope GIS Tips & Tricks ‐ USGS Adds 100K Topo Scale to OnDemand Map Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1