Lin Feng, Xinze Liu, Kaijing Sun, Ying Sun, Wei Wu, Changbao Chen, Xin Jin, Xilin Wan
{"title":"Ginsenoside Rb1 Inhibits the Proliferation of Lung Cancer Cells by Inducing the Mitochondrial-mediated Apoptosis Pathway.","authors":"Lin Feng, Xinze Liu, Kaijing Sun, Ying Sun, Wei Wu, Changbao Chen, Xin Jin, Xilin Wan","doi":"10.2174/0118715206299212240304142047","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lung cancer is one of the more common malignant tumors posing a great threat to human life, and it is very urgent to find safe and effective therapeutic drugs. The antitumor effect of ginsenosides has been reported to be a treatment with a strong effect and a high safety profile.</p><p><strong>Objective: </strong>This paper aimed to investigate the inhibitory effect of ginsenoside Rb1 on 95D and NCI-H460 lung cancer cells and its pathway to promote apoptosis.</p><p><strong>Methods: </strong>We performed the CCK-8 assay, fluorescence staining assay, flow cytometry, scratch healing assay, and Transwell assay to detect the effects of different concentrations of ginsenoside Rb1 on the antitumor activity of 95D and NCI-H460 cells and Western Blot detected the mechanism of antitumor effect.</p><p><strong>Results: </strong>Ginsenoside Rb1 treatment significantly increased the inhibition and apoptosis rates of 95D and NCIH460 cells and inhibited the cell cycle transition from S phase to G2/M. Rb1 induces apoptosis by altering the levels of P53, Bax, Cyto-c, Caspase-8, Caspase-3, Cleaved Caspase-3, Bcl-2, MMP-2, and MMP-9 proteins and activating the external apoptotic pathway.</p><p><strong>Conclusion: </strong>Ginsenoside Rb1 inhibits proliferation and migration and induces apoptosis of 95D and NCI-H460 lung cancer cells by regulating the mitochondrial apoptotic pathway to achieve antitumor activity.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":"928-941"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206299212240304142047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Lung cancer is one of the more common malignant tumors posing a great threat to human life, and it is very urgent to find safe and effective therapeutic drugs. The antitumor effect of ginsenosides has been reported to be a treatment with a strong effect and a high safety profile.
Objective: This paper aimed to investigate the inhibitory effect of ginsenoside Rb1 on 95D and NCI-H460 lung cancer cells and its pathway to promote apoptosis.
Methods: We performed the CCK-8 assay, fluorescence staining assay, flow cytometry, scratch healing assay, and Transwell assay to detect the effects of different concentrations of ginsenoside Rb1 on the antitumor activity of 95D and NCI-H460 cells and Western Blot detected the mechanism of antitumor effect.
Results: Ginsenoside Rb1 treatment significantly increased the inhibition and apoptosis rates of 95D and NCIH460 cells and inhibited the cell cycle transition from S phase to G2/M. Rb1 induces apoptosis by altering the levels of P53, Bax, Cyto-c, Caspase-8, Caspase-3, Cleaved Caspase-3, Bcl-2, MMP-2, and MMP-9 proteins and activating the external apoptotic pathway.
Conclusion: Ginsenoside Rb1 inhibits proliferation and migration and induces apoptosis of 95D and NCI-H460 lung cancer cells by regulating the mitochondrial apoptotic pathway to achieve antitumor activity.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.