{"title":"Hemodynamic Response to Exercise Training in Heart Failure With Reduced Ejection Fraction Patients.","authors":"Marine Kirsch, Marie-Christine Iliou, Damien Vitiello","doi":"10.14740/cr1591","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Supervised exercise training decreases total and cardiac mortality and increases quality of life of heart failure with reduced ejection fraction (HFrEF) patients. However, response to training is variable from one patient to another and factors responsible for a positive response to training remain unclear. The aims of the study were to compare cardiac hemodynamic changes after an exercise training program in responders (R) versus non-responders (NR) HFrEF patients, and to compare different discriminators used to assess response to training.</p><p><strong>Methods: </strong>Seventy-six HFrEF patients (86% males, 57 ± 12 years) completed an exercise training program for 4 weeks. Patients underwent cardiopulmonary exercise testing (CPET) on a cycle ergometer before and after training. Cardiac hemodynamics were measured by impedance cardiography during CPET. The R and NR groups were classified using the median change in peak oxygen uptake (V̇O<sub>2peak</sub>).</p><p><strong>Results: </strong>There were statistically significant differences in V̇O<sub>2peak</sub> (+35% vs. -1%, P < 0.0001) and in peaks of ventilation (+30% vs. +2%, P < 0.0001), cardiac output (CO<sub>peak</sub>) (+25% vs. +4%, P < 0.01), systolic blood pressure (+12% vs. +2%, P < 0.05), diastolic blood pressure (+9% vs. +4%, P < 0.05) and heart rate (+8% vs. +1%, P < 0.01) between R and NR after the training program. V̇O<sub>2peak</sub> was the best discriminator between R and NR (receiver operating characteristic (ROC) area under the curve (AUC) = 0.83, P < 0.0001), followed by CO<sub>peak</sub> (ROC AUC = 0.77, P < 0.0001).</p><p><strong>Conclusion: </strong>V̇O<sub>2peak</sub> is the best discriminator between HFrEF R and NR patients after the training program. Responders showed improvements in peak hemodynamic parameters. These results pave the way for other studies to determine how the individualization of exercise training programs and peak hemodynamic parameters potentially linked to a better positive response status.</p>","PeriodicalId":9424,"journal":{"name":"Cardiology Research","volume":"15 1","pages":"18-28"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10923260/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14740/cr1591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Supervised exercise training decreases total and cardiac mortality and increases quality of life of heart failure with reduced ejection fraction (HFrEF) patients. However, response to training is variable from one patient to another and factors responsible for a positive response to training remain unclear. The aims of the study were to compare cardiac hemodynamic changes after an exercise training program in responders (R) versus non-responders (NR) HFrEF patients, and to compare different discriminators used to assess response to training.
Methods: Seventy-six HFrEF patients (86% males, 57 ± 12 years) completed an exercise training program for 4 weeks. Patients underwent cardiopulmonary exercise testing (CPET) on a cycle ergometer before and after training. Cardiac hemodynamics were measured by impedance cardiography during CPET. The R and NR groups were classified using the median change in peak oxygen uptake (V̇O2peak).
Results: There were statistically significant differences in V̇O2peak (+35% vs. -1%, P < 0.0001) and in peaks of ventilation (+30% vs. +2%, P < 0.0001), cardiac output (COpeak) (+25% vs. +4%, P < 0.01), systolic blood pressure (+12% vs. +2%, P < 0.05), diastolic blood pressure (+9% vs. +4%, P < 0.05) and heart rate (+8% vs. +1%, P < 0.01) between R and NR after the training program. V̇O2peak was the best discriminator between R and NR (receiver operating characteristic (ROC) area under the curve (AUC) = 0.83, P < 0.0001), followed by COpeak (ROC AUC = 0.77, P < 0.0001).
Conclusion: V̇O2peak is the best discriminator between HFrEF R and NR patients after the training program. Responders showed improvements in peak hemodynamic parameters. These results pave the way for other studies to determine how the individualization of exercise training programs and peak hemodynamic parameters potentially linked to a better positive response status.
期刊介绍:
Cardiology Research is an open access, peer-reviewed, international journal. All submissions relating to basic research and clinical practice of cardiology and cardiovascular medicine are in this journal''s scope. This journal focuses on publishing original research and observations in all cardiovascular medicine aspects. Manuscript types include original article, review, case report, short communication, book review, letter to the editor.