Both acute glyphosate and the aminomethylphosphonic acid intoxication decreased the acetylcholinesterase activity in rat hippocampus, prefrontal cortex and gastrocnemius muscle.

IF 2.1 4区 医学 Q3 CHEMISTRY, MULTIDISCIPLINARY Drug and Chemical Toxicology Pub Date : 2024-11-01 Epub Date: 2024-03-11 DOI:10.1080/01480545.2024.2326634
Jesús Chávez-Reyes, Carlos H López-Lariz, Bruno A Marichal-Cancino
{"title":"Both acute glyphosate and the aminomethylphosphonic acid intoxication decreased the acetylcholinesterase activity in rat hippocampus, prefrontal cortex and gastrocnemius muscle.","authors":"Jesús Chávez-Reyes, Carlos H López-Lariz, Bruno A Marichal-Cancino","doi":"10.1080/01480545.2024.2326634","DOIUrl":null,"url":null,"abstract":"<p><p>It has been reported that glyphosate, one of the most common herbicides used in agriculture, impairs locomotion and cognition. Glyphosate has a variable half-life in soil up to biotic and/or abiotic factors transform the molecule in metabolites such as the aminomethylphosphonic acid (AMPA) that has a longer half-life. In this study, female Sprague Dawley rats were acutely exposed to different doses of glyphosate or AMPA (i.e. 10, 56 or 100 mg/kg) and, subsequently, the acetylcholinesterase (AChE) activity was measured in the hippocampus, prefrontal cortex (PFC) and the gastrocnemius muscle. Both glyphosate and AMPA produced a similar decrease in the AChE activity in all the tissues tested. These results suggest that interference with normal cholinergic neurotransmission may be one of the mechanisms involved in glyphosate-induced motor alterations in rats. Moreover, our results highlight the biological importance of AMPA as a molecule with anticholinesterase action in brain and skeletal muscle. To our knowledge, this is the first report showing <i>in vivo</i> that AMPA, the major metabolite of glyphosate, behaves as an organophosphate.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"1033-1037"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2024.2326634","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It has been reported that glyphosate, one of the most common herbicides used in agriculture, impairs locomotion and cognition. Glyphosate has a variable half-life in soil up to biotic and/or abiotic factors transform the molecule in metabolites such as the aminomethylphosphonic acid (AMPA) that has a longer half-life. In this study, female Sprague Dawley rats were acutely exposed to different doses of glyphosate or AMPA (i.e. 10, 56 or 100 mg/kg) and, subsequently, the acetylcholinesterase (AChE) activity was measured in the hippocampus, prefrontal cortex (PFC) and the gastrocnemius muscle. Both glyphosate and AMPA produced a similar decrease in the AChE activity in all the tissues tested. These results suggest that interference with normal cholinergic neurotransmission may be one of the mechanisms involved in glyphosate-induced motor alterations in rats. Moreover, our results highlight the biological importance of AMPA as a molecule with anticholinesterase action in brain and skeletal muscle. To our knowledge, this is the first report showing in vivo that AMPA, the major metabolite of glyphosate, behaves as an organophosphate.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
急性草甘膦和氨甲基膦酸中毒都会降低大鼠海马、前额叶皮层和腓肠肌中乙酰胆碱酯酶的活性。
据报道,草甘膦是农业中最常用的除草剂之一,会损害运动能力和认知能力。草甘膦在土壤中的半衰期长短不一,生物和/或非生物因素可将草甘膦分子转化为代谢物,如半衰期较长的氨甲基膦酸(AMPA)。在这项研究中,雌性 Sprague Dawley 大鼠急性接触了不同剂量的草甘膦或 AMPA(即 10、56 或 100 毫克/千克),随后测量了海马、前额叶皮层(PFC)和腓肠肌中乙酰胆碱酯酶(AChE)的活性。草甘膦和 AMPA 在所有测试组织中都产生了类似的乙酰胆碱酯酶活性下降。这些结果表明,干扰正常的胆碱能神经传递可能是草甘膦诱导大鼠运动改变的机制之一。此外,我们的研究结果还强调了 AMPA 作为一种在大脑和骨骼肌中具有抗胆碱酯酶作用的分子在生物学上的重要性。据我们所知,这是第一份在体内显示草甘膦的主要代谢物 AMPA 具有有机磷作用的报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug and Chemical Toxicology
Drug and Chemical Toxicology 医学-毒理学
CiteScore
6.00
自引率
3.80%
发文量
99
审稿时长
3 months
期刊介绍: Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal. Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.
期刊最新文献
Effect of adenosine triphosphate on methylphenidate-induced oxidative and inflammatory kidney damage in rats. Pre-clinical acute oral toxicity and subacute neurotoxicity risk assessments on sprague dawley rats treated with single dose or repeated doses of flavonoid-enriched fraction extracted from Oroxylum indicum leaves. In silico molecular docking and in vitro analysis of atomoxetine. Humic acid attenuates cisplatin-induced nephrotoxicity in rats. Novel chlorinated oxime K870 protects rats against paraoxon poisoning better than obidoxime.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1