Eri Murata , Takuma Yoshida , Utano Tomaru , Saaki Yamamoto , Aya Fukui-Miyazaki , Akihiro Ishizu , Masanori Kasahara
{"title":"Decreased proteasome function increases oxidative stress in the early stage of pressure ulcer development","authors":"Eri Murata , Takuma Yoshida , Utano Tomaru , Saaki Yamamoto , Aya Fukui-Miyazaki , Akihiro Ishizu , Masanori Kasahara","doi":"10.1016/j.yexmp.2024.104891","DOIUrl":null,"url":null,"abstract":"<div><p>The aging process in the elderly results in heightened skin fragility associated with various disorders, including pressure ulcers (PUs). Despite the high incidence of PUs in the elderly population, there is a limited body of research specifically examining the impact of aging on the development of pressure ulcers. Therefore, investigating age-related physiological abnormalities is essential to elucidate the pathogenesis of PUs. Ischemia-reperfusion (I/R) injury and the subsequent oxidative stress caused by reactive oxygen species (ROS) play essential roles in the early stage of PUs. In this study, we used a mouse model of proteasomal dysfunction with an age-related phenotype to examine the role of proteasome activity in cutaneous I/R injury <em>in vivo</em>. Decreased proteasome function did not affect the expression of inflammatory cytokines and adhesion molecules in the I/R area in transgenic mice; however, proteasome inhibition increased oxidative stress that was not attenuated by activation of the oxidative stress response mediated by NF-E2-related factor 2 (Nrf2). In dermal fibroblasts (FCs) subjected to hypoxia-reoxygenation (H/R), proteasome inhibition induced oxidative stress and ROS production, and Nrf2 activation did not adequately upregulate antioxidant enzyme expression, possibly leading to antioxidant/oxidant imbalance. The free radical scavenger edaravone had protective effects against I/R injury <em>in vivo</em> and decreased oxidative stress in FCs treated with a proteasome inhibitor and subjected to H/R <em>in vitro</em>. The results suggest that the age-related decline in proteasome activity promotes cutaneous I/R injury-induced oxidative stress, and free radical scavengers may exert protective effects by preventing oxidative stress in the early stage of PUs.</p></div>","PeriodicalId":12176,"journal":{"name":"Experimental and molecular pathology","volume":"137 ","pages":"Article 104891"},"PeriodicalIF":2.8000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0014480024000108/pdfft?md5=f1f9ec6172e98a6e919439d4fa27ed6c&pid=1-s2.0-S0014480024000108-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and molecular pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014480024000108","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The aging process in the elderly results in heightened skin fragility associated with various disorders, including pressure ulcers (PUs). Despite the high incidence of PUs in the elderly population, there is a limited body of research specifically examining the impact of aging on the development of pressure ulcers. Therefore, investigating age-related physiological abnormalities is essential to elucidate the pathogenesis of PUs. Ischemia-reperfusion (I/R) injury and the subsequent oxidative stress caused by reactive oxygen species (ROS) play essential roles in the early stage of PUs. In this study, we used a mouse model of proteasomal dysfunction with an age-related phenotype to examine the role of proteasome activity in cutaneous I/R injury in vivo. Decreased proteasome function did not affect the expression of inflammatory cytokines and adhesion molecules in the I/R area in transgenic mice; however, proteasome inhibition increased oxidative stress that was not attenuated by activation of the oxidative stress response mediated by NF-E2-related factor 2 (Nrf2). In dermal fibroblasts (FCs) subjected to hypoxia-reoxygenation (H/R), proteasome inhibition induced oxidative stress and ROS production, and Nrf2 activation did not adequately upregulate antioxidant enzyme expression, possibly leading to antioxidant/oxidant imbalance. The free radical scavenger edaravone had protective effects against I/R injury in vivo and decreased oxidative stress in FCs treated with a proteasome inhibitor and subjected to H/R in vitro. The results suggest that the age-related decline in proteasome activity promotes cutaneous I/R injury-induced oxidative stress, and free radical scavengers may exert protective effects by preventing oxidative stress in the early stage of PUs.
期刊介绍:
Under new editorial leadership, Experimental and Molecular Pathology presents original articles on disease processes in relation to structural and biochemical alterations in mammalian tissues and fluids and on the application of newer techniques of molecular biology to problems of pathology in humans and other animals. The journal also publishes selected interpretive synthesis reviews by bench level investigators working at the "cutting edge" of contemporary research in pathology. In addition, special thematic issues present original research reports that unravel some of Nature''s most jealously guarded secrets on the pathologic basis of disease.
Research Areas include: Stem cells; Neoangiogenesis; Molecular diagnostics; Polymerase chain reaction; In situ hybridization; DNA sequencing; Cell receptors; Carcinogenesis; Pathobiology of neoplasia; Complex infectious diseases; Transplantation; Cytokines; Flow cytomeric analysis; Inflammation; Cellular injury; Immunology and hypersensitivity; Athersclerosis.