Steven Jervis, Antony Payton, Arpana Verma, Rachel Thomasson, Kay Poulton
{"title":"Homozygous HLA-DQB1*06:02 combined with T-cell receptor alpha polymorphism results in narcolepsy onset – A familial case report","authors":"Steven Jervis, Antony Payton, Arpana Verma, Rachel Thomasson, Kay Poulton","doi":"10.1111/iji.12666","DOIUrl":null,"url":null,"abstract":"<p>Narcolepsy is a life-long neurological disorder with well-established genetic risk factors. Human leukocyte antigen-DQB1*06:02 remains the strongest genetic predeterminant; however, polymorphisms in genes encoding the T-cell receptor alpha chain are also strongly linked. This case report shows the inheritance pathway of these genetic markers contributing to narcolepsy onset in a 17-year-old female.</p>","PeriodicalId":14003,"journal":{"name":"International Journal of Immunogenetics","volume":"51 3","pages":"187-191"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iji.12666","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Immunogenetics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iji.12666","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Narcolepsy is a life-long neurological disorder with well-established genetic risk factors. Human leukocyte antigen-DQB1*06:02 remains the strongest genetic predeterminant; however, polymorphisms in genes encoding the T-cell receptor alpha chain are also strongly linked. This case report shows the inheritance pathway of these genetic markers contributing to narcolepsy onset in a 17-year-old female.
期刊介绍:
The International Journal of Immunogenetics (formerly European Journal of Immunogenetics) publishes original contributions on the genetic control of components of the immune system and their interactions in both humans and experimental animals. The term ''genetic'' is taken in its broadest sense to include studies at the evolutionary, molecular, chromosomal functional and population levels in both health and disease. Examples are:
-studies of blood groups and other surface antigens-
cell interactions and immune response-
receptors, antibodies, complement components and cytokines-
polymorphism-
evolution of the organisation, control and function of immune system components-
anthropology and disease associations-
the genetics of immune-related disease: allergy, autoimmunity, immunodeficiency and other immune pathologies-
All papers are seen by at least two independent referees and only papers of the highest quality are accepted.