Benjamin D Seadler, David L Joyce, James Zelten, Kevin Sweeney, Taylor Wisgerhof, Zoey Slettehaugh, Y William Yuan, Brandon J Tefft, Paul J Pearson
{"title":"Proof of Concept: Development of a Mitral Annuloplasty Ring With Crosshatch Net.","authors":"Benjamin D Seadler, David L Joyce, James Zelten, Kevin Sweeney, Taylor Wisgerhof, Zoey Slettehaugh, Y William Yuan, Brandon J Tefft, Paul J Pearson","doi":"10.1177/15569845241232685","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Here we report our preclinical, proof-of-concept testing to assess the ability of a novel device to correct mitral regurgitation. The Milwaukee Heart device aims to enable any cardiac surgeon to perform high-quality mitral valve repair using a standard annuloplasty ring with a crosshatch of microporous, monofilament suture.</p><p><strong>Methods: </strong>Hemodynamic, echocardiographic, and videographic data were collected at baseline, following induction of mitral regurgitation, and after repair using porcine hearts in an ex vivo biosimulator model. A commercially available cardiac prosthesis assessment platform was then used to assess the hydrodynamic characteristics of the study device.</p><p><strong>Results: </strong>Porcine biosimulator pressure and flow metrics exhibited successful correction of mitral regurgitation following device implantation with similar values to baseline. Hydrodynamic results yielded pressure gradients and an effective orifice area comparable to currently approved prostheses.</p><p><strong>Conclusions: </strong>The study device effectively reduced mitral valve regurgitation and improved hemodynamics in our preclinical model with similar biophysical metrics to currently approved devices. Future in vivo trials are needed to evaluate the efficacy, biocompatibility, and freedom from the most likely adverse events, such as device thrombosis, embolic events, and hemolysis.</p>","PeriodicalId":13574,"journal":{"name":"Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15569845241232685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Here we report our preclinical, proof-of-concept testing to assess the ability of a novel device to correct mitral regurgitation. The Milwaukee Heart device aims to enable any cardiac surgeon to perform high-quality mitral valve repair using a standard annuloplasty ring with a crosshatch of microporous, monofilament suture.
Methods: Hemodynamic, echocardiographic, and videographic data were collected at baseline, following induction of mitral regurgitation, and after repair using porcine hearts in an ex vivo biosimulator model. A commercially available cardiac prosthesis assessment platform was then used to assess the hydrodynamic characteristics of the study device.
Results: Porcine biosimulator pressure and flow metrics exhibited successful correction of mitral regurgitation following device implantation with similar values to baseline. Hydrodynamic results yielded pressure gradients and an effective orifice area comparable to currently approved prostheses.
Conclusions: The study device effectively reduced mitral valve regurgitation and improved hemodynamics in our preclinical model with similar biophysical metrics to currently approved devices. Future in vivo trials are needed to evaluate the efficacy, biocompatibility, and freedom from the most likely adverse events, such as device thrombosis, embolic events, and hemolysis.
期刊介绍:
Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery is the first journal whose main mission is to disseminate information specifically about advances in technology and techniques that lead to less invasive treatment of cardiothoracic and vascular disease. It delivers cutting edge original research, reviews, essays, case reports, and editorials from the pioneers and experts in the field of minimally invasive cardiothoracic and vascular disease, including biomedical engineers. Also included are papers presented at the annual ISMICS meeting. Official Journal of the International Society for Minimally Invasive Cardiothoracic Surgery