Chengyue Wu, David A Hormuth, Ty Easley, Federico Pineda, Gregory S Karczmar, Thomas E Yankeelov
{"title":"Systematic evaluation of MRI-based characterization of tumor-associated vascular morphology and hemodynamics via a dynamic digital phantom.","authors":"Chengyue Wu, David A Hormuth, Ty Easley, Federico Pineda, Gregory S Karczmar, Thomas E Yankeelov","doi":"10.1117/1.JMI.11.2.024002","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Validation of quantitative imaging biomarkers is a challenging task, due to the difficulty in measuring the ground truth of the target biological process. A digital phantom-based framework is established to systematically validate the quantitative characterization of tumor-associated vascular morphology and hemodynamics based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).</p><p><strong>Approach: </strong>A digital phantom is employed to provide a ground-truth vascular system within which 45 synthetic tumors are simulated. Morphological analysis is performed on high-spatial resolution DCE-MRI data (spatial/temporal resolution = 30 to <math><mrow><mn>300</mn><mtext> </mtext><mi>μ</mi><mi>m</mi><mo>/</mo><mn>60</mn><mtext> </mtext><mi>s</mi></mrow></math>) to determine the accuracy of locating the arterial inputs of tumor-associated vessels (TAVs). Hemodynamic analysis is then performed on the combination of high-spatial resolution and high-temporal resolution (spatial/temporal resolution = 60 to <math><mrow><mn>300</mn><mtext> </mtext><mi>μ</mi><mi>m</mi><mo>/</mo><mn>1</mn></mrow></math> to 10 s) DCE-MRI data, determining the accuracy of estimating tumor-associated blood pressure, vascular extraction rate, interstitial pressure, and interstitial flow velocity.</p><p><strong>Results: </strong>The observed effects of acquisition settings demonstrate that, when optimizing the DCE-MRI protocol for the morphological analysis, increasing the spatial resolution is helpful but not necessary, as the location and arterial input of TAVs can be recovered with high accuracy even with the lowest investigated spatial resolution. When optimizing the DCE-MRI protocol for hemodynamic analysis, increasing the spatial resolution of the images used for vessel segmentation is essential, and the spatial and temporal resolutions of the images used for the kinetic parameter fitting require simultaneous optimization.</p><p><strong>Conclusion: </strong>An <i>in silico</i> validation framework was generated to systematically quantify the effects of image acquisition settings on the ability to accurately estimate tumor-associated characteristics.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 2","pages":"024002"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10921778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.2.024002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Validation of quantitative imaging biomarkers is a challenging task, due to the difficulty in measuring the ground truth of the target biological process. A digital phantom-based framework is established to systematically validate the quantitative characterization of tumor-associated vascular morphology and hemodynamics based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).
Approach: A digital phantom is employed to provide a ground-truth vascular system within which 45 synthetic tumors are simulated. Morphological analysis is performed on high-spatial resolution DCE-MRI data (spatial/temporal resolution = 30 to ) to determine the accuracy of locating the arterial inputs of tumor-associated vessels (TAVs). Hemodynamic analysis is then performed on the combination of high-spatial resolution and high-temporal resolution (spatial/temporal resolution = 60 to to 10 s) DCE-MRI data, determining the accuracy of estimating tumor-associated blood pressure, vascular extraction rate, interstitial pressure, and interstitial flow velocity.
Results: The observed effects of acquisition settings demonstrate that, when optimizing the DCE-MRI protocol for the morphological analysis, increasing the spatial resolution is helpful but not necessary, as the location and arterial input of TAVs can be recovered with high accuracy even with the lowest investigated spatial resolution. When optimizing the DCE-MRI protocol for hemodynamic analysis, increasing the spatial resolution of the images used for vessel segmentation is essential, and the spatial and temporal resolutions of the images used for the kinetic parameter fitting require simultaneous optimization.
Conclusion: An in silico validation framework was generated to systematically quantify the effects of image acquisition settings on the ability to accurately estimate tumor-associated characteristics.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.