A Perspective on Electrical Stimulation and Sympathetic Regeneration in Peripheral Nerve Injuries.

IF 1.8 Q3 CLINICAL NEUROLOGY Neurotrauma reports Pub Date : 2024-03-04 eCollection Date: 2024-01-01 DOI:10.1089/neur.2023.0133
Tina Tian, Amy M Moore, Paul A Ghareeb, Nicholas M Boulis, Patricia J Ward
{"title":"A Perspective on Electrical Stimulation and Sympathetic Regeneration in Peripheral Nerve Injuries.","authors":"Tina Tian, Amy M Moore, Paul A Ghareeb, Nicholas M Boulis, Patricia J Ward","doi":"10.1089/neur.2023.0133","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral nerve injuries (PNIs) are common and devastating. The current standard of care relies on the slow and inefficient process of nerve regeneration after surgical intervention. Electrical stimulation (ES) has been shown to both experimentally and clinically result in improved regeneration and functional recovery after PNI for motor and sensory neurons; however, its effects on sympathetic regeneration have never been studied. Sympathetic neurons are responsible for a myriad of homeostatic processes that include, but are not limited to, blood pressure, immune response, sweating, and the structural integrity of the neuromuscular junction. Almost one quarter of the axons in the sciatic nerve are from sympathetic neurons, and their importance in bodily homeostasis and the pathogenesis of neuropathic pain should not be underestimated. Therefore, as ES continues to make its way into patient care, it is not only important to understand its impact on all neuron subtypes, but also to ensure that potential adverse effects are minimized. This piece gives an overview of the effects of ES in animals models and in humans while offering a perspective on the potential effects of ES on sympathetic axon regeneration.</p>","PeriodicalId":74300,"journal":{"name":"Neurotrauma reports","volume":"5 1","pages":"172-180"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotrauma reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/neur.2023.0133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Peripheral nerve injuries (PNIs) are common and devastating. The current standard of care relies on the slow and inefficient process of nerve regeneration after surgical intervention. Electrical stimulation (ES) has been shown to both experimentally and clinically result in improved regeneration and functional recovery after PNI for motor and sensory neurons; however, its effects on sympathetic regeneration have never been studied. Sympathetic neurons are responsible for a myriad of homeostatic processes that include, but are not limited to, blood pressure, immune response, sweating, and the structural integrity of the neuromuscular junction. Almost one quarter of the axons in the sciatic nerve are from sympathetic neurons, and their importance in bodily homeostasis and the pathogenesis of neuropathic pain should not be underestimated. Therefore, as ES continues to make its way into patient care, it is not only important to understand its impact on all neuron subtypes, but also to ensure that potential adverse effects are minimized. This piece gives an overview of the effects of ES in animals models and in humans while offering a perspective on the potential effects of ES on sympathetic axon regeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外周神经损伤中的电刺激和交感神经再生透视。
周围神经损伤(PNIs)是一种常见的破坏性损伤。目前的治疗标准依赖于手术干预后缓慢而低效的神经再生过程。实验和临床均表明,电刺激(ES)可改善运动神经元和感觉神经元在周围神经损伤后的再生和功能恢复,但其对交感神经再生的影响却从未被研究过。交感神经元负责无数的平衡过程,包括但不限于血压、免疫反应、出汗和神经肌肉接头结构的完整性。坐骨神经中近四分之一的轴突来自交感神经元,它们在体内平衡和神经病理性疼痛发病机制中的重要性不容低估。因此,随着 ES 不断进入患者护理领域,不仅要了解它对所有神经元亚型的影响,还要确保将潜在的不良影响降至最低。这篇文章概述了 ES 在动物模型和人体中的影响,同时提供了 ES 对交感神经轴突再生的潜在影响的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Small Molecule Drug C381 Attenuates Brain Vascular Damage Following Repetitive Mild Traumatic Injury. Clinical Impact of an AI Decision Support System for Detection of Intracranial Hemorrhage in CT Scans. Metacognitive Therapy for People Experiencing Persistent Post-Concussion Symptoms Following Mild Traumatic Brain Injury: A Preliminary Multiple Case-Series Study. Multicenter Study Examining Temporal Trends in Traumatic Intracranial Hemorrhage Over Six Years Using Joinpoint Regression. Resilience and Concussion Recovery in Minority Women: Promoting Health Equity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1