Sina Tamaddonfard, Amir Erfanparast, Esmaeal Tamaddonfard, Farhad Soltanalinejad
{"title":"The CB1 cannabinoid receptors involvement in anti-epileptic effect of safranal on penicillin-induced epileptiform activity in rats.","authors":"Sina Tamaddonfard, Amir Erfanparast, Esmaeal Tamaddonfard, Farhad Soltanalinejad","doi":"10.30466/vrf.2023.2000166.3851","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroprotective effects for natural products are supported by several studies. In this regard, safranal, a constitute of saffron, has the potential to exert beneficial effects in neuro-logical disorders such as Parkinson's disease, epilepsy, stroke, multiple sclerosis and Alzheimer's disease. Here, we investigated the effect of safranal on penicillin-induced epileptiform activity. Also, the effects of intracerebroventricular (ICV) microinjection of AM251 as a CB1-cannabinoid receptors antagonist to clarify the possible mechanism of safranal were evaluated. Epileptiform activity was induced by intra-cortical administration of penicillin (300 IU, 1.50 μL) in urethane-anesthetized rats. Electrocorticographic recordings were used to analyze the frequency and amplitude of spike waves. Intraperitoneal injections of safranal at doses of 1.00 and 4.00 mg kg<sup>-1</sup> significantly reduced both the number and amplitude of spike waves. The ICV microinjection of AM251 (0.50 μg 2.00 μL<sup>-1</sup>) significantly increased the frequency and amplitude of spike waves. In addition, the anti-epileptic effect induced by administration of safranal at a dose of 4.00 mg kg<sup>-1</sup> was partially prevented by ICV microinjection of 0.50 μg 2.00 μL<sup>-1</sup> of AM251. The results showed anti-epileptiform activities for safranal. Central CB1 cannabinergic receptors might be involved in the anti-epileptiform activity of safranal.</p>","PeriodicalId":23989,"journal":{"name":"Veterinary Research Forum","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10921132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research Forum","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.30466/vrf.2023.2000166.3851","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroprotective effects for natural products are supported by several studies. In this regard, safranal, a constitute of saffron, has the potential to exert beneficial effects in neuro-logical disorders such as Parkinson's disease, epilepsy, stroke, multiple sclerosis and Alzheimer's disease. Here, we investigated the effect of safranal on penicillin-induced epileptiform activity. Also, the effects of intracerebroventricular (ICV) microinjection of AM251 as a CB1-cannabinoid receptors antagonist to clarify the possible mechanism of safranal were evaluated. Epileptiform activity was induced by intra-cortical administration of penicillin (300 IU, 1.50 μL) in urethane-anesthetized rats. Electrocorticographic recordings were used to analyze the frequency and amplitude of spike waves. Intraperitoneal injections of safranal at doses of 1.00 and 4.00 mg kg-1 significantly reduced both the number and amplitude of spike waves. The ICV microinjection of AM251 (0.50 μg 2.00 μL-1) significantly increased the frequency and amplitude of spike waves. In addition, the anti-epileptic effect induced by administration of safranal at a dose of 4.00 mg kg-1 was partially prevented by ICV microinjection of 0.50 μg 2.00 μL-1 of AM251. The results showed anti-epileptiform activities for safranal. Central CB1 cannabinergic receptors might be involved in the anti-epileptiform activity of safranal.
期刊介绍:
Veterinary Research Forum (VRF) is a quarterly international journal committed to publish worldwide contributions on all aspects of veterinary science and medicine, including anatomy and histology, physiology and pharmacology, anatomic and clinical pathology, parasitology, microbiology, immunology and epidemiology, food hygiene, poultry science, fish and aquaculture, anesthesia and surgery, large and small animal internal medicine, large and small animal reproduction, biotechnology and diagnostic imaging of domestic, companion and farm animals.