Exploring monocarboxylate transporter inhibition for cancer treatment.

Q3 Medicine Exploration of targeted anti-tumor therapy Pub Date : 2024-01-01 Epub Date: 2024-02-23 DOI:10.37349/etat.2024.00210
Tomas Koltai, Larry Fliegel
{"title":"Exploring monocarboxylate transporter inhibition for cancer treatment.","authors":"Tomas Koltai, Larry Fliegel","doi":"10.37349/etat.2024.00210","DOIUrl":null,"url":null,"abstract":"<p><p>Cells are separated from the environment by a lipid bilayer membrane that is relatively impermeable to solutes. The transport of ions and small molecules across this membrane is an essential process in cell biology and metabolism. Monocarboxylate transporters (MCTs) belong to a vast family of solute carriers (SLCs) that facilitate the transport of certain hydrophylic small compounds through the bilipid cell membrane. The existence of 446 genes that code for SLCs is the best evidence of their importance. In-depth research on MCTs is quite recent and probably promoted by their role in cancer development and progression. Importantly, it has recently been realized that these transporters represent an interesting target for cancer treatment. The search for clinically useful monocarboxylate inhibitors is an even more recent field. There is limited pre-clinical and clinical experience with new inhibitors and their precise mechanism of action is still under investigation. What is common to all of them is the inhibition of lactate transport. This review discusses the structure and function of MCTs, their participation in cancer, and old and newly developed inhibitors. Some suggestions on how to improve their anticancer effects are also discussed.</p>","PeriodicalId":73002,"journal":{"name":"Exploration of targeted anti-tumor therapy","volume":"5 1","pages":"135-169"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918235/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration of targeted anti-tumor therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37349/etat.2024.00210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Cells are separated from the environment by a lipid bilayer membrane that is relatively impermeable to solutes. The transport of ions and small molecules across this membrane is an essential process in cell biology and metabolism. Monocarboxylate transporters (MCTs) belong to a vast family of solute carriers (SLCs) that facilitate the transport of certain hydrophylic small compounds through the bilipid cell membrane. The existence of 446 genes that code for SLCs is the best evidence of their importance. In-depth research on MCTs is quite recent and probably promoted by their role in cancer development and progression. Importantly, it has recently been realized that these transporters represent an interesting target for cancer treatment. The search for clinically useful monocarboxylate inhibitors is an even more recent field. There is limited pre-clinical and clinical experience with new inhibitors and their precise mechanism of action is still under investigation. What is common to all of them is the inhibition of lactate transport. This review discusses the structure and function of MCTs, their participation in cancer, and old and newly developed inhibitors. Some suggestions on how to improve their anticancer effects are also discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索抑制单羧酸盐转运体治疗癌症。
细胞与环境之间由一层脂质双层膜隔开,这层膜对溶质的渗透性相对较差。离子和小分子跨膜运输是细胞生物学和新陈代谢的重要过程。单羧酸盐转运体(MCTs)属于溶质载体(SLCs)的一个庞大家族,可促进某些水合小化合物通过双脂细胞膜进行转运。446 个编码 SLCs 的基因的存在就是其重要性的最好证明。对 MCTs 的深入研究是最近才开始的,这可能是由于它们在癌症发生和发展中的作用。重要的是,人们最近意识到这些转运体是治疗癌症的一个有趣靶点。寻找对临床有用的单羧酸盐抑制剂更是一个新领域。新抑制剂的临床前和临床经验有限,其确切的作用机制仍在研究中。它们的共同点是抑制乳酸转运。这篇综述讨论了乳酸转运蛋白的结构和功能、它们在癌症中的参与以及新旧开发的抑制剂。此外,还讨论了如何提高其抗癌效果的一些建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Correction: Deep learning based automated epidermal growth factor receptor and anaplastic lymphoma kinase status prediction of brain metastasis in non-small cell lung cancer Advancements and recent explorations of anti-cancer activity of chrysin: from molecular targets to therapeutic perspective Resistance to immune checkpoint inhibitors in colorectal cancer with deficient mismatch repair/microsatellite instability: misdiagnosis, pseudoprogression and/or tumor heterogeneity? Immunotherapy in thymic epithelial tumors: tissue predictive biomarkers for immune checkpoint inhibitors Spheroids and organoids derived from colorectal cancer as tools for in vitro drug screening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1