Improved likelihood ratios for face recognition in surveillance video by multimodal feature pairing

Andrea Macarulla Rodriguez , Zeno Geradts , Marcel Worring , Luis Unzueta
{"title":"Improved likelihood ratios for face recognition in surveillance video by multimodal feature pairing","authors":"Andrea Macarulla Rodriguez ,&nbsp;Zeno Geradts ,&nbsp;Marcel Worring ,&nbsp;Luis Unzueta","doi":"10.1016/j.fsisyn.2024.100458","DOIUrl":null,"url":null,"abstract":"<div><p>In forensic and security scenarios, accurate facial recognition in surveillance videos, often challenged by variations in pose, illumination, and expression, is essential. Traditional manual comparison methods lack standardization, revealing a critical gap in evidence reliability. We propose an enhanced images-to-video recognition approach, pairing facial images with attributes like pose and quality. Utilizing datasets such as ENFSI 2015, SCFace, XQLFW, ChokePoint, and ForenFace, we assess evidence strength using calibration methods for likelihood ratio estimation. Three models—ArcFace, FaceNet, and QMagFace—undergo validation, with the log-likelihood ratio cost (<em>C</em><sub><em>llr</em></sub>) as a key metric. Results indicate that prioritizing high-quality frames and aligning attributes with reference images optimizes recognition, yielding similar <em>C</em><sub><em>llr</em></sub> values to the top 25% best frames approach. A combined embedding weighted by frame quality emerges as the second-best method. Upon preprocessing facial images with the super resolution CodeFormer, it unexpectedly increased <em>C</em><sub><em>llr</em></sub>, undermining evidence reliability, advising against its use in such forensic applications.</p></div>","PeriodicalId":36925,"journal":{"name":"Forensic Science International: Synergy","volume":"8 ","pages":"Article 100458"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589871X24000056/pdfft?md5=4e6213402131e38344525390a883a8c8&pid=1-s2.0-S2589871X24000056-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International: Synergy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589871X24000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In forensic and security scenarios, accurate facial recognition in surveillance videos, often challenged by variations in pose, illumination, and expression, is essential. Traditional manual comparison methods lack standardization, revealing a critical gap in evidence reliability. We propose an enhanced images-to-video recognition approach, pairing facial images with attributes like pose and quality. Utilizing datasets such as ENFSI 2015, SCFace, XQLFW, ChokePoint, and ForenFace, we assess evidence strength using calibration methods for likelihood ratio estimation. Three models—ArcFace, FaceNet, and QMagFace—undergo validation, with the log-likelihood ratio cost (Cllr) as a key metric. Results indicate that prioritizing high-quality frames and aligning attributes with reference images optimizes recognition, yielding similar Cllr values to the top 25% best frames approach. A combined embedding weighted by frame quality emerges as the second-best method. Upon preprocessing facial images with the super resolution CodeFormer, it unexpectedly increased Cllr, undermining evidence reliability, advising against its use in such forensic applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多模态特征配对提高监控视频中人脸识别的似然比
在法医和安全场景中,监控视频中的面部识别往往受到姿势、光照和表情变化的挑战,因此准确识别面部至关重要。传统的人工比对方法缺乏标准化,在证据可靠性方面存在重大差距。我们提出了一种增强型图像视频识别方法,将面部图像与姿势和质量等属性配对。利用 ENFSI 2015、SCFace、XQLFW、ChokePoint 和 ForenFace 等数据集,我们使用似然比估计校准方法来评估证据强度。三个模型--ArcFace、FaceNet 和 QMagFace--进行了验证,并将对数似然比成本 (Cllr) 作为关键指标。结果表明,优先考虑高质量帧并将属性与参考图像对齐可优化识别效果,产生的 Cllr 值与前 25% 最佳帧方法相似。按帧质量加权的组合嵌入法是第二好的方法。使用超分辨率 CodeFormer 对面部图像进行预处理后,Cllr 值意外增加,影响了证据的可靠性,建议不要将其用于此类法证应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
75
审稿时长
90 days
期刊最新文献
A transdisciplinary integrated approach to improve identification outcomes for decomposed decedents in medicolegal death investigations Manner of death prediction: A machine learning approach to classify suicide and non-suicide using blood metabolomics Digitalisation of forensic expert activity in Ukraine: Organisational and legal framework Impact of harassment and bullying of forensic scientists on work performance, absenteeism, and intention to leave the workplace in the United States Barriers to human remains identification using forensic odontology in resource-constrained settings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1