Cost-efficient Workflow as a Service using Containers

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-03-11 DOI:10.1007/s10723-024-09745-7
Kamalesh Karmakar, Anurina Tarafdar, Rajib K. Das, Sunirmal Khatua
{"title":"Cost-efficient Workflow as a Service using Containers","authors":"Kamalesh Karmakar, Anurina Tarafdar, Rajib K. Das, Sunirmal Khatua","doi":"10.1007/s10723-024-09745-7","DOIUrl":null,"url":null,"abstract":"<p>Workflows are special applications used to solve complex scientific problems. The emerging Workflow as a Service (WaaS) model provides scientists with an effective way of deploying their workflow applications in Cloud environments. The WaaS model can execute multiple workflows in a multi-tenant Cloud environment. Scheduling the tasks of the workflows in the WaaS model has several challenges. The scheduling approach must properly utilize the underlying Cloud resources and satisfy the users’ Quality of Service (QoS) requirements for all the workflows. In this work, we have proposed a heurisine-sensitive workflows in a containerized Cloud environment for the WaaS model. We formulated the problem of minimizing the MIPS (million instructions per second) requirement of tasks while satisfying the deadline of the workflows as a non-linear optimization problem and applied the Lagranges multiplier method to solve it. It allows us to configure/scale the containers’ resources and reduce costs. We also ensure maximum utilization of VM’s resources while allocating containers to VMs. Furthermore, we have proposed an approach to effectively scale containers and VMs to improve the schedulability of the workflows at runtime to deal with the dynamic arrival of the workflows. Extensive experiments and comparisons with other state-of-the-art works show that the proposed approach can significantly improve resource utilization, prevent deadline violation, and reduce the cost of renting Cloud resources for the WaaS model.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-024-09745-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Workflows are special applications used to solve complex scientific problems. The emerging Workflow as a Service (WaaS) model provides scientists with an effective way of deploying their workflow applications in Cloud environments. The WaaS model can execute multiple workflows in a multi-tenant Cloud environment. Scheduling the tasks of the workflows in the WaaS model has several challenges. The scheduling approach must properly utilize the underlying Cloud resources and satisfy the users’ Quality of Service (QoS) requirements for all the workflows. In this work, we have proposed a heurisine-sensitive workflows in a containerized Cloud environment for the WaaS model. We formulated the problem of minimizing the MIPS (million instructions per second) requirement of tasks while satisfying the deadline of the workflows as a non-linear optimization problem and applied the Lagranges multiplier method to solve it. It allows us to configure/scale the containers’ resources and reduce costs. We also ensure maximum utilization of VM’s resources while allocating containers to VMs. Furthermore, we have proposed an approach to effectively scale containers and VMs to improve the schedulability of the workflows at runtime to deal with the dynamic arrival of the workflows. Extensive experiments and comparisons with other state-of-the-art works show that the proposed approach can significantly improve resource utilization, prevent deadline violation, and reduce the cost of renting Cloud resources for the WaaS model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用容器实现经济高效的工作流即服务
工作流是用于解决复杂科学问题的特殊应用程序。新兴的工作流即服务(WaaS)模式为科学家提供了一种在云环境中部署工作流应用程序的有效方法。WaaS 模型可以在多租户云环境中执行多个工作流。在 WaaS 模型中调度工作流的任务有几个挑战。调度方法必须妥善利用底层云资源,并满足用户对所有工作流的服务质量(QoS)要求。在这项工作中,我们针对 WaaS 模型提出了一种容器化云环境中的法理学敏感工作流。我们将在满足工作流截止日期的同时最大限度降低任务的 MIPS(每秒百万条指令)要求这一问题表述为一个非线性优化问题,并应用拉格朗日乘法来解决这一问题。这使我们能够配置/扩展容器资源并降低成本。在将容器分配给虚拟机的同时,我们还确保了虚拟机资源的最大利用率。此外,我们还提出了一种有效扩展容器和虚拟机的方法,以提高工作流在运行时的可调度性,从而应对工作流的动态到来。广泛的实验以及与其他一流作品的比较表明,所提出的方法可以显著提高资源利用率,防止违反截止日期,并降低 WaaS 模型租用云资源的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1