{"title":"Reducing the Impact of Time Evolution on Source Code Authorship Attribution via Domain Adaptation","authors":"Zhen Li, Shasha Zhao, Chen Chen, Qian Chen","doi":"10.1145/3652151","DOIUrl":null,"url":null,"abstract":"<p>Source code authorship attribution is an important problem in practical applications such as plagiarism detection, software forensics, and copyright disputes. Recent studies show that existing methods for source code authorship attribution can be significantly affected by time evolution, leading to a decrease in attribution accuracy year by year. To alleviate the problem that Deep Learning (DL)-based source code authorship attribution degrading in accuracy due to time evolution, we propose a new framework called <underline>Time</underline> <underline>D</underline>omain <underline>A</underline>daptation (TimeDA) by adding new feature extractors to the original DL-based code attribution framework that enhances the learning ability of the original model on source domain features without requiring new or more source data. Moreover, we employ a centroid-based pseudo-labeling strategy using neighborhood clustering entropy for adaptive learning to improve the robustness of DL-based code authorship attribution. Experimental results show that TimeDA can significantly enhance the robustness of DL-based source code authorship attribution to time evolution, with an average improvement of 8.7% on the Java dataset and 5.2% on the C++ dataset. In addition, our TimeDA benefits from employing the centroid-based pseudo-labeling strategy, which significantly reduced the model training time by 87.3% compared to traditional unsupervised domain adaptive methods.</p>","PeriodicalId":50933,"journal":{"name":"ACM Transactions on Software Engineering and Methodology","volume":"89 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Software Engineering and Methodology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3652151","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Source code authorship attribution is an important problem in practical applications such as plagiarism detection, software forensics, and copyright disputes. Recent studies show that existing methods for source code authorship attribution can be significantly affected by time evolution, leading to a decrease in attribution accuracy year by year. To alleviate the problem that Deep Learning (DL)-based source code authorship attribution degrading in accuracy due to time evolution, we propose a new framework called TimeDomain Adaptation (TimeDA) by adding new feature extractors to the original DL-based code attribution framework that enhances the learning ability of the original model on source domain features without requiring new or more source data. Moreover, we employ a centroid-based pseudo-labeling strategy using neighborhood clustering entropy for adaptive learning to improve the robustness of DL-based code authorship attribution. Experimental results show that TimeDA can significantly enhance the robustness of DL-based source code authorship attribution to time evolution, with an average improvement of 8.7% on the Java dataset and 5.2% on the C++ dataset. In addition, our TimeDA benefits from employing the centroid-based pseudo-labeling strategy, which significantly reduced the model training time by 87.3% compared to traditional unsupervised domain adaptive methods.
期刊介绍:
Designing and building a large, complex software system is a tremendous challenge. ACM Transactions on Software Engineering and Methodology (TOSEM) publishes papers on all aspects of that challenge: specification, design, development and maintenance. It covers tools and methodologies, languages, data structures, and algorithms. TOSEM also reports on successful efforts, noting practical lessons that can be scaled and transferred to other projects, and often looks at applications of innovative technologies. The tone is scholarly but readable; the content is worthy of study; the presentation is effective.