Graph Models for Contextual Intention Prediction in Dialog Systems

IF 0.6 4区 数学 Q3 MATHEMATICS Doklady Mathematics Pub Date : 2024-03-11 DOI:10.1134/S106456242370117X
D. P. Kuznetsov, D. R. Ledneva
{"title":"Graph Models for Contextual Intention Prediction in Dialog Systems","authors":"D. P. Kuznetsov,&nbsp;D. R. Ledneva","doi":"10.1134/S106456242370117X","DOIUrl":null,"url":null,"abstract":"<p>The paper introduces a novel methodology for predicting intentions in dialog systems through a graph-based approach. This methodology involves constructing graph structures that represent dialogs, thus capturing contextual information effectively. By analyzing results from various open and closed domain datasets, the authors demonstrate the substantial enhancement in intention prediction accuracy achieved by combining graph models with text encoders. The primary focus of the study revolves around assessing the impact of diverse graph architectures and encoders on the performance of the proposed technique. Through empirical evaluation, the experimental outcomes affirm the superiority of graph neural networks in terms of both <span>\\(Recall@k\\)</span> (MAR) metric and computational resources when compared to alternative methods. This research uncovers a novel avenue for intention prediction in dialog systems by leveraging graph-based representations.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"108 2 supplement","pages":"S399 - S415"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S106456242370117X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper introduces a novel methodology for predicting intentions in dialog systems through a graph-based approach. This methodology involves constructing graph structures that represent dialogs, thus capturing contextual information effectively. By analyzing results from various open and closed domain datasets, the authors demonstrate the substantial enhancement in intention prediction accuracy achieved by combining graph models with text encoders. The primary focus of the study revolves around assessing the impact of diverse graph architectures and encoders on the performance of the proposed technique. Through empirical evaluation, the experimental outcomes affirm the superiority of graph neural networks in terms of both \(Recall@k\) (MAR) metric and computational resources when compared to alternative methods. This research uncovers a novel avenue for intention prediction in dialog systems by leveraging graph-based representations.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于对话系统中上下文意向预测的图模型
摘要 本文介绍了一种通过基于图的方法预测对话系统意图的新方法。该方法涉及构建表示对话的图结构,从而有效捕捉上下文信息。通过分析各种开放和封闭领域数据集的结果,作者证明了将图模型与文本编码器相结合可大大提高意图预测的准确性。研究的主要重点是评估不同图架构和编码器对所提技术性能的影响。通过实证评估,实验结果肯定了图神经网络与其他方法相比,在 \(Recall@k\) (MAR) 指标和计算资源方面的优越性。这项研究通过利用基于图的表征,为对话系统中的意图预测开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Doklady Mathematics
Doklady Mathematics 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
39
审稿时长
3-6 weeks
期刊介绍: Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.
期刊最新文献
An Approach to Obtaining Perturbation Bounds for Continuous-Time Markov Chains Numerical Solution of Integro-Differential Equations of Viscoelasticity with Kernels of Exponential and Rabotnov Types On the Numerical Solution of the Three-Dimensional Neumann Problem for the Helmholtz Equation Using the Potential Method On Primary Submodules in Modules of Entire Functions That Are Dual to Spaces of Ω-Ultradifferentiable Functions New Formulas for the Inversion of the Radon Transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1