{"title":"Model-based analysis of erosion-induced microplastic delivery from arable land to the stream network of a mesoscale catchment","authors":"Raphael Rehm, Peter Fiener","doi":"10.5194/soil-10-211-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Soils are generally accepted as sinks for microplastics (MPs) but at the same time might be an MP source for inland waters. However, little is known regarding the potential MP delivery from soils to aquatic systems via surface runoff and erosion. This study provides, for the first time, an estimate of the extent of soil-erosion-induced MP delivery from an arable-dominated mesoscale catchment (390 km2) to its river network within a typical arable region of southern Germany. To do this, a soil erosion model was used and combined with the potential particular MP load of arable land from different sources (sewage sludge, compost, atmospheric deposition, and tyre wear) from 1950 onwards. The modelling resulted in an annual mean MP flux into the stream network of 6.33 kg MP a−1 in 2020, which was dominated by tyre wear (80 %). Overall, 0.11 %–0.17 % of the MPs applied to arable soils between 1950 and 2020 were transported into the stream network. In terms of mass, this small proportion was in the same range as the MP inputs from wastewater treatment plants within the test catchment. More MP (0.5 %–1 % of input between 1950 and 2020) was deposited in the grassland areas along the stream network, and this could be an additional source of MP during flood events. Most (5 % of the MP applied between 1950 and 2020) of the MP translocated by tillage and water erosion was buried under the plough layer. Thus, the main part of the MP added to arable land remained in the topsoil and is available for long-term soil erosion. This can be illustrated based on a “stop MP input in 2020” scenario, indicating that MP delivery to the stream network until 2100 would only be reduced by 14 %. Overall, arable land at risk of soil erosion represents a long-term MP sink but also a long-term MP source for inland waters.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"91 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/soil-10-211-2024","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Soils are generally accepted as sinks for microplastics (MPs) but at the same time might be an MP source for inland waters. However, little is known regarding the potential MP delivery from soils to aquatic systems via surface runoff and erosion. This study provides, for the first time, an estimate of the extent of soil-erosion-induced MP delivery from an arable-dominated mesoscale catchment (390 km2) to its river network within a typical arable region of southern Germany. To do this, a soil erosion model was used and combined with the potential particular MP load of arable land from different sources (sewage sludge, compost, atmospheric deposition, and tyre wear) from 1950 onwards. The modelling resulted in an annual mean MP flux into the stream network of 6.33 kg MP a−1 in 2020, which was dominated by tyre wear (80 %). Overall, 0.11 %–0.17 % of the MPs applied to arable soils between 1950 and 2020 were transported into the stream network. In terms of mass, this small proportion was in the same range as the MP inputs from wastewater treatment plants within the test catchment. More MP (0.5 %–1 % of input between 1950 and 2020) was deposited in the grassland areas along the stream network, and this could be an additional source of MP during flood events. Most (5 % of the MP applied between 1950 and 2020) of the MP translocated by tillage and water erosion was buried under the plough layer. Thus, the main part of the MP added to arable land remained in the topsoil and is available for long-term soil erosion. This can be illustrated based on a “stop MP input in 2020” scenario, indicating that MP delivery to the stream network until 2100 would only be reduced by 14 %. Overall, arable land at risk of soil erosion represents a long-term MP sink but also a long-term MP source for inland waters.
SoilAgricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍:
SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences.
SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).