Hazel Yücel, Nihal Ege, Barış Erbaş, Julius Kaplunov
{"title":"A revisit to the plane problem for low-frequency acoustic scattering by an elastic cylindrical shell","authors":"Hazel Yücel, Nihal Ege, Barış Erbaş, Julius Kaplunov","doi":"10.1177/10812865241233737","DOIUrl":null,"url":null,"abstract":"The proposed revisit to a classical problem in fluid–structure interaction is due to an interest in the analysis of the narrow resonances corresponding to a low-frequency fluid-borne wave, inspired by modeling and design of metamaterials. In this case, numerical implementations would greatly benefit from preliminary asymptotic predictions. The normal incidence of an acoustic wave is studied for a circular cylindrical shell governed by plane strain equations in elasticity. A novel high-order asymptotic procedure is established considering for the first time all the peculiarities of the low-frequency behavior of a thin fluid-loaded cylinder. The obtained results are exposed in the form suggested by the Resonance Scattering Theory. It is shown that the pressure scattered by rigid cylinder is the best choice for a background component. Simple explicit formulae for resonant frequencies, amplitudes, and widths are presented. They support various important observations, including comparison between widths and the error of the asymptotic expansion for frequencies.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"73 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241233737","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The proposed revisit to a classical problem in fluid–structure interaction is due to an interest in the analysis of the narrow resonances corresponding to a low-frequency fluid-borne wave, inspired by modeling and design of metamaterials. In this case, numerical implementations would greatly benefit from preliminary asymptotic predictions. The normal incidence of an acoustic wave is studied for a circular cylindrical shell governed by plane strain equations in elasticity. A novel high-order asymptotic procedure is established considering for the first time all the peculiarities of the low-frequency behavior of a thin fluid-loaded cylinder. The obtained results are exposed in the form suggested by the Resonance Scattering Theory. It is shown that the pressure scattered by rigid cylinder is the best choice for a background component. Simple explicit formulae for resonant frequencies, amplitudes, and widths are presented. They support various important observations, including comparison between widths and the error of the asymptotic expansion for frequencies.
期刊介绍:
Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science.
The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).