On Geometrically Convex Risk Measures

Mücahit Aygün, Fabio Bellini, Roger J. A. Laeven
{"title":"On Geometrically Convex Risk Measures","authors":"Mücahit Aygün, Fabio Bellini, Roger J. A. Laeven","doi":"arxiv-2403.06188","DOIUrl":null,"url":null,"abstract":"Geometrically convex functions constitute an interesting class of functions\nobtained by replacing the arithmetic mean with the geometric mean in the\ndefinition of convexity. As recently suggested, geometric convexity may be a\nsensible property for financial risk measures ([7,13,4]). We introduce a notion of GG-convex conjugate, parallel to the classical\nnotion of convex conjugate introduced by Fenchel, and we discuss its\nproperties. We show how GG-convex conjugation can be axiomatized in the spirit\nof the notion of general duality transforms introduced in [2,3]. We then move to the study of GG-convex risk measures, which are defined as\nGG-convex functionals defined on suitable spaces of random variables. We derive\na general dual representation that extends analogous expressions presented in\n[4] under the additional assumptions of monotonicity and positive homogeneity.\nAs a prominent example, we study the family of Orlicz risk measures. Finally,\nwe introduce multiplicative versions of the convex and of the increasing convex\norder and discuss related consistency properties of law-invariant GG-convex\nrisk measures.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.06188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Geometrically convex functions constitute an interesting class of functions obtained by replacing the arithmetic mean with the geometric mean in the definition of convexity. As recently suggested, geometric convexity may be a sensible property for financial risk measures ([7,13,4]). We introduce a notion of GG-convex conjugate, parallel to the classical notion of convex conjugate introduced by Fenchel, and we discuss its properties. We show how GG-convex conjugation can be axiomatized in the spirit of the notion of general duality transforms introduced in [2,3]. We then move to the study of GG-convex risk measures, which are defined as GG-convex functionals defined on suitable spaces of random variables. We derive a general dual representation that extends analogous expressions presented in [4] under the additional assumptions of monotonicity and positive homogeneity. As a prominent example, we study the family of Orlicz risk measures. Finally, we introduce multiplicative versions of the convex and of the increasing convex order and discuss related consistency properties of law-invariant GG-convex risk measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论几何凸度风险度量
几何凸函数是一类有趣的函数,它是在凸性定义中用几何平均数代替算术平均数而得到的。正如最近提出的那样,几何凸性可能是金融风险度量的一个可行属性([7,13,4])。我们引入了一个与 Fenchel 提出的经典凸共轭概念平行的 GG 凸共轭概念,并讨论了它的特性。我们展示了如何以[2,3]中引入的一般对偶变换概念的精神将 GG-凸共轭公理化。然后,我们转向研究 GG-凸风险度量,它被定义为定义在合适的随机变量空间上的 GG-凸函数。作为一个突出的例子,我们研究了 Orlicz 风险度量族。最后,我们引入了凸阶和递增凸阶的乘法版本,并讨论了规律不变的 GG 凸风险度量的相关一致性性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeFi Arbitrage in Hedged Liquidity Tokens Decomposition Pipeline for Large-Scale Portfolio Optimization with Applications to Near-Term Quantum Computing Research and Design of a Financial Intelligent Risk Control Platform Based on Big Data Analysis and Deep Machine Learning Credit Spreads' Term Structure: Stochastic Modeling with CIR++ Intensity Claims processing and costs under capacity constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1