Chi Zhang, Koki Yamaoka, Takashi Fujinaga, Yuping Sun
{"title":"Structural Behaviors of Steel Tube-encased Concrete Columns Confined by Bolted Circular Thin Steel Tube","authors":"Chi Zhang, Koki Yamaoka, Takashi Fujinaga, Yuping Sun","doi":"10.3151/jact.22.115","DOIUrl":null,"url":null,"abstract":"</p><p>Six square steel tube-encased concrete (SC) columns confined by bolted circular thin steel tube were fabricated and tested under cyclical reversed lateral load to investigate their structural behavior. The primary experimental variables included the axial load ratio, the grade of the encased square steel tubes (FB rank and FC rank), the infilling of concrete into the encased steel tube, and the thickness of outer circular bolted thin steel tubes. Experimental results revealed that confinement by the bolted circular thin steel tube with outer-diameter-to-thickness ratio of 189 could ensure sufficient ductility to the SC columns, and the bolted thin steel tube did not rupture until the drift angle of about 0.09 rad. Furthermore, a simple evaluation method for the ultimate flexural strength of SC column section was proposed along with a numerical analytical method to predict the overall behavior of SC columns. The proposed methods can take the confinement effect by the bolted circular steel tube into consideration. Fairly good agreement between the experimental results and the calculated ones verified the reliability and accuracy of the proposed methods.</p>\n<p></p>","PeriodicalId":14868,"journal":{"name":"Journal of Advanced Concrete Technology","volume":"42 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Concrete Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3151/jact.22.115","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Six square steel tube-encased concrete (SC) columns confined by bolted circular thin steel tube were fabricated and tested under cyclical reversed lateral load to investigate their structural behavior. The primary experimental variables included the axial load ratio, the grade of the encased square steel tubes (FB rank and FC rank), the infilling of concrete into the encased steel tube, and the thickness of outer circular bolted thin steel tubes. Experimental results revealed that confinement by the bolted circular thin steel tube with outer-diameter-to-thickness ratio of 189 could ensure sufficient ductility to the SC columns, and the bolted thin steel tube did not rupture until the drift angle of about 0.09 rad. Furthermore, a simple evaluation method for the ultimate flexural strength of SC column section was proposed along with a numerical analytical method to predict the overall behavior of SC columns. The proposed methods can take the confinement effect by the bolted circular steel tube into consideration. Fairly good agreement between the experimental results and the calculated ones verified the reliability and accuracy of the proposed methods.
期刊介绍:
JACT is fast. Only 5 to 7 months from submission to publishing thanks to electronic file exchange between you, the reviewers and the editors.
JACT is high quality. Peer-reviewed by internationally renowned experts who return review comments to ensure the highest possible quality.
JACT is transparent. The status of your manuscript from submission to publishing can be viewed on our website, greatly reducing the frustration of being kept in the dark, possibly for over a year in the case of some journals.
JACT is cost-effective. Submission and subscription are free of charge . Full-text PDF files are available for the authors to open at their web sites.
Scope:
*Materials:
-Material properties
-Fresh concrete
-Hardened concrete
-High performance concrete
-Development of new materials
-Fiber reinforcement
*Maintenance and Rehabilitation:
-Durability and repair
-Strengthening/Rehabilitation
-LCC for concrete structures
-Environmant conscious materials
*Structures:
-Design and construction of RC and PC Structures
-Seismic design
-Safety against environmental disasters
-Failure mechanism and non-linear analysis/modeling
-Composite and mixed structures
*Other:
-Monitoring
-Aesthetics of concrete structures
-Other concrete related topics