Impact Ionization Mass Spectra of Polypyrrole-Coated Anthracene Microparticles: A Useful Mimic for Cosmic Polycyclic Aromatic Hydrocarbon Dust

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Earth and Space Chemistry Pub Date : 2024-03-12 DOI:10.1021/acsearthspacechem.3c00353
Rebecca Mikula*, Zoltan Sternovsky, Steven P. Armes, Ethan Ayari, Jordy Bouwman, Derek H. H. Chan, John Fontanese, Mihaly Horanyi, Jon K. Hillier, Sascha Kempf, Nozair Khawaja, Zoltan Kupihár, Frank Postberg and Ralf Srama, 
{"title":"Impact Ionization Mass Spectra of Polypyrrole-Coated Anthracene Microparticles: A Useful Mimic for Cosmic Polycyclic Aromatic Hydrocarbon Dust","authors":"Rebecca Mikula*,&nbsp;Zoltan Sternovsky,&nbsp;Steven P. Armes,&nbsp;Ethan Ayari,&nbsp;Jordy Bouwman,&nbsp;Derek H. H. Chan,&nbsp;John Fontanese,&nbsp;Mihaly Horanyi,&nbsp;Jon K. Hillier,&nbsp;Sascha Kempf,&nbsp;Nozair Khawaja,&nbsp;Zoltan Kupihár,&nbsp;Frank Postberg and Ralf Srama,&nbsp;","doi":"10.1021/acsearthspacechem.3c00353","DOIUrl":null,"url":null,"abstract":"<p >Polycyclic aromatic hydrocarbons (PAHs) are abundantly present in the interstellar medium and in our solar system and lock up a significant fraction of cosmic carbon. They are found to be present in interstellar and interplanetary dust particles. Impact ionization mass spectrometers on future space missions can detect such dust particles and assess their composition; it is essential to understand the impact ionization behavior of PAH-based dust particles impinging on metal targets at relevant velocities. To date, impact ionization studies of fast-moving organic-rich dust particles have been limited to vinyl polymers, such as polystyrene or poly(methyl methacrylate). Recently, PAH anthracene has been prepared in the form of microparticles suitable for use in dust accelerators. Here, we present the first comprehensive study of the impact ionization mass spectra of such anthracene microparticles impinging on a gold target at 2–35 km s<sup>–1</sup>. The mass spectra recorded for the resulting ionic plasma are strongly dependent on the incident velocity with impacts at 6–10 km s<sup>–1</sup> being optimal for generating distinctive spectral features that enable the identification of the parent molecule. Under these conditions, the protonated parent ion and doubly protonated radical, C<sub>14</sub>H<sub>11</sub><sup>+</sup>, and C<sub>14</sub>H<sub>12</sub><sup>•+</sup> (as well as other diagnostic cluster species such as (C<sub>14</sub>H<sub>10</sub>)(CH)<sup>+</sup> and (C<sub>14</sub>H<sub>11</sub>)(C<sub>2</sub>H)<sup>+</sup>) can be reproducibly identified. We find that the impact ionization spectra always differ markedly from the electron impact ionization mass spectra reported for anthracene in the literature regardless of the impact velocity. This study highlights the importance of performing fundamental impact ionization studies of organic particles by using a dust accelerator to enable the interpretation of data collected in future space missions.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.3c00353","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are abundantly present in the interstellar medium and in our solar system and lock up a significant fraction of cosmic carbon. They are found to be present in interstellar and interplanetary dust particles. Impact ionization mass spectrometers on future space missions can detect such dust particles and assess their composition; it is essential to understand the impact ionization behavior of PAH-based dust particles impinging on metal targets at relevant velocities. To date, impact ionization studies of fast-moving organic-rich dust particles have been limited to vinyl polymers, such as polystyrene or poly(methyl methacrylate). Recently, PAH anthracene has been prepared in the form of microparticles suitable for use in dust accelerators. Here, we present the first comprehensive study of the impact ionization mass spectra of such anthracene microparticles impinging on a gold target at 2–35 km s–1. The mass spectra recorded for the resulting ionic plasma are strongly dependent on the incident velocity with impacts at 6–10 km s–1 being optimal for generating distinctive spectral features that enable the identification of the parent molecule. Under these conditions, the protonated parent ion and doubly protonated radical, C14H11+, and C14H12•+ (as well as other diagnostic cluster species such as (C14H10)(CH)+ and (C14H11)(C2H)+) can be reproducibly identified. We find that the impact ionization spectra always differ markedly from the electron impact ionization mass spectra reported for anthracene in the literature regardless of the impact velocity. This study highlights the importance of performing fundamental impact ionization studies of organic particles by using a dust accelerator to enable the interpretation of data collected in future space missions.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚吡咯包覆蒽微颗粒的撞击电离质谱:宇宙多环芳香烃尘埃的有用模拟物
多环芳烃(PAHs)大量存在于星际介质和太阳系中,并锁住了宇宙碳的很大一部分。多环芳烃被发现存在于星际和行星际尘埃粒子中。未来太空任务中的撞击电离质谱仪可以探测到这类尘埃粒子并评估其成分;了解以相关速度撞击金属目标的多环芳烃尘埃粒子的撞击电离行为至关重要。迄今为止,对快速移动的富含有机物的尘埃粒子的撞击电离研究仅限于乙烯基聚合物,如聚苯乙烯或聚(甲基丙烯酸甲酯)。最近,多环芳烃蒽被制备成适用于粉尘加速器的微粒形式。在此,我们首次全面研究了这种蒽微粒以 2-35 km s-1 的速度撞击金靶时的撞击电离质谱。所记录的离子等离子体质谱与入射速度密切相关,6-10 km s-1 的撞击速度最适合产生独特的光谱特征,从而能够识别母体分子。在这些条件下,质子化母离子和双质子化自由基、C14H11+ 和 C14H12-+(以及 (C14H10)(CH)+ 和 (C14H11)(C2H)+ 等其他诊断性团簇物种)可以被重复识别。我们发现,无论撞击速度如何,撞击电离质谱总是与文献中报道的蒽的电子撞击电离质谱存在明显差异。这项研究强调了利用尘埃加速器对有机颗粒进行基本撞击电离研究的重要性,以便能够解释在未来空间任务中收集到的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Temperature and pH Affect the Sorption and Transformation of Dissolved Organic Carbon by Birnessite Determination of Light and Condensate Oil Categories in a Complex Petroleum System by Fluorescence Parameters: A Case Study on the Northern Tazhong Uplift, Tarim Basin, China Fe/Mg-Silicate Chemical Gardens as Analogs to Silicate-Rich Hydrothermal Chimneys on Early Earth and Mars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1